含风–光–水的多能源系统的同质化耦合模型Multi-energy System Homogeneous Coupling Model Considering Wind-photovoltaic-hydro Power Generations
叶林;屈晓旭;马明顺;么艳香;王伟胜;庄红山;董凌;
摘要(Abstract):
多能源电力系统将成为主要的能源供给方式。为解决各种异质能源发电模型差异性大、相容度不高的问题,明确多种能源耦合机理和基本规律,通过风电、光伏和水电的多源数据驱动,基于因子分析法建立了多种异质能源同质化表征模型,将异质能源输出功率统一表征为"功率水平分量+波动分量+差异性随机分量+预测误差分量"之和;以此为基础,采用近邻传播(affinity propagation,AP)算法对低维特征因子聚类分析,进而建立一种计及风–光–水耦合特性的多场景发电模型,并提出了用于评价多种异质能源耦合特性的耦合度指标。算例以西北地区电网实测数据为研究对象,结果表明所构建的同质化表征模型具有有效性及可行性;基于同质化模型生成的不同场景耦合差异性特征明显,可为多能源电力系统的规划运行提供基础。
关键词(KeyWords): 风光水;同质化;多能源;耦合性;典型场景
基金项目(Foundation): 国家重点研发计划项目(2017YFB0902200);; 国家电网公司科技项目(5228001700CW)~~
作者(Author): 叶林;屈晓旭;马明顺;么艳香;王伟胜;庄红山;董凌;
Email:
DOI: 10.13335/j.1000-3673.pst.2020.0771
参考文献(References):
- [1]舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-8.Shu Yinbiao,Zhang Zhigang,Guo Jianbo,et al.Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE,2017,37(1):1-8(in Chinese).
- [2]艾芊,郝然.多能互补、集成优化能源系统关键技术及挑战[J].电力系统自动化,2018,42(4):2-10.Ai Qian,Hao Ran.Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system[J].Automation of Electric Power Systems, 2018, 42(4):2-10(in Chinese).
- [3]巩志皓,王程.基于风险的电-热综合能源系统风电消纳能力评估[J].全球能源互联网,2019,2(4):325-332.Gong Zhihao,Wang Cheng.Risk-based admissibility assessment of wind generation in integrated electric-heat systems[J].Journal of Global Energy Interconnection,2019,2(4):325-332(in Chinese).
- [4]国家能源局.2019年可再生能源并网运行情况[EB/OL].[2020-03-06].http://www.nea.gov.cn/2020-03/06/c_138850234.htm.
- [5]汪昌霜.大规模新能源发电并网容量效益及消纳能力评估方法研究[D].武汉:华中科技大学,2018.
- [6]徐青山,蔡霁霖,李淋,等.含多状态机组风电场的发输电系统可靠性评估加速方法[J].中国电机工程学报,2018,38(24):7248-7257.Xu Qingshan,Cai Jilin,Li Lin,et al.Acceleration method for evaluating the reliability of composite power system considering wind farms with multi-state wind turbines[J].Proceedings of the CSEE,2018,38(24):7248-7257(in Chinese).
- [7] Ding Y,Singh C,Goel L,et al.Short-term and medium-term reliability evaluation for power systems with high penetration of wind power[J].IEEE Transactions on Sustainable Energy,2014,5(3):896-906.
- [8]程林,何剑.电力系统可靠性原理和应用[M].2版.北京:清华大学出版社,2015.
- [9]戴蕾思,叶承晋,傅旭华,等.考虑概率分布约束的含高渗透率风电电力系统储能鲁棒优化方法[J].电网技术,2017,41(3):94-102.Dai Leisi,Ye Chengjin,Fu Xuhua,et al.Distributional robust joint chance constrained optimal capacity installment of energy storage in power system with high penetration of wind power[J].Power System Technology,2017,41(3):94-102(in Chinese).
- [10] Bian Q,Xin H,Wang Z,et al.Distributionally robust solution to the reserve scheduling problem with partial information of wind power[J].IEEE Transactions on Power Systems,2015,30(5):2822-2823.
- [11]杨策,孙伟卿,韩冬,等.考虑风电出力不确定的分布鲁棒经济调度[J/OL].电网技术,2020[2020-05-19].http://kns.cnki.net/kcms/detail/11.2410.TM.20200519.0916.001.html. DOI:10.13335/j.1000-3673.pst.2020.0367.Yang Ce,Sun Weiqing,Han Dong,et al.Distributionally robust economic dispatch considering uncertain wind power output[J/OL].Power System Technology, 2020[2020-05-19].http://kns.cnki.net/kcms/etail/11.2410.TM.20200519.0916.001.html.DOI:10.13335/j.1000-3673.pst.2020.0367(in Chinese).
- [12] Liu Y,Nair N K C.A two-stage stochastic dynamic economic dispatch model considering wind uncertainty[J].IEEE Transactions on Sustainable Energy,2016,7(2):819-829.
- [13]叶林,李镓辰,路朋,等.基于近邻传播聚类与MCMC算法的风电时序数据聚合方法[J].中国电机工程学报,2020,40(12):3744-3754.Ye Lin,Li Jiachen,Lu Peng,et al.Wind power time series aggregation approach based on affinity propagation clustering and MCMC algorithm[J].Proceedings of the CSEE,2020,40(12):3744-3754(in Chinese).
- [14]李明节,陈国平,董存,等.新能源电力系统电力电量平衡问题研究[J].电网技术,2019,43(11):3979-3986.Li Mingjie,Chen Guoping,Dong Cun,et al.Research on power balance of high proportion renewable energy system[J]. Power System Technology,2019,43(11):3979-3986(in Chinese).
- [15]王群,董文略,杨莉.基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法[J].中国电机工程学报,2015,35(11):22-29.Wang Qun,Dong Wenlue,Yang Li.A wind power/photovoltaic typical scenario set generation algorithm based on Wasserstein distance metric and revised K-medoids cluster[J].Proceedings of the CSEE,2015,35(11):22-29(in Chinese).
- [16]杨晶显,刘俊勇,韩晓言,等.基于深度嵌入聚类的水光荷不确定性源场景生成方法[J/OL].中国电机工程学报,2020[2020-02-27]. https://kns.cnki.net/KCMS/detail/11.2107.TM.20200226.1602.007.html.DOI:10.13334/j.0258-8013.pcsee.191563.Yang Jingxian,Liu Junyong,Han Xiaoyan,et al. An uncertain hydro/PV/load typical scenarios generation method based on deep embedding for clustering[J/OL]. Proceedings of the CSEE,2020[2020-02-27]. https://kns.cnki.net/KCMS/detail/11.2107.TM.20200226.1602.007.html.DOI:10.13334/j.0258-8013.pcsee.191563(in Chinese).
- [17]丁明,解蛟龙,刘新宇.面向风电接纳能力评价的风资源/负荷典型场景集[J].中国电机工程学报,2016,36(15):4064-4071.Ding Ming,Xie Jiaolong,Liu Xinyu.The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration[J].Proceedings of the CSEE,2016,36(15):4064-4071(in Chinese).
- [18] Wang G,Zhao K,Shi J,et al.An iterative approach for modeling photovoltaic modules without implicit equations[J].Applied Energy,2017(202):189-198.
- [19]刘东冉,陈树勇,马敏,等.光伏发电系统模型综述[J].电网技术,2011,35(8):47-52.Liu Dongran,Chen Shuyong,Ma Min,et al.A review on models for photovoltaic generation system[J].Power System Technology,2011,35(8):47-52(in Chinese).
- [20]李丹.考虑时空相关性的源荷功率概率建模和概率预测方法[D].重庆:重庆大学,2017.
- [21] Frey B J,Dueck D.Clustering by passing messages between data points[J].Science,2007,315(5814):972-976.