大规模风光并网条件下水电灵活性量化及提升方法Quantification and Promotion of Hydropower Flexibility With Large-scale Wind and Solar Power Incorporated Into Grid
张俊涛;甘霖;程春田;李刚;李秀峰;赵珍玉;张楠男;
摘要(Abstract):
近年来,我国西南水电主导的电网中风光占比大幅提升,对水电灵活性提出了更高的要求。如何量化大规模风光并网后的水电灵活性,是促进水风光协同发展和大规模消纳的关键因素。为有效量化及提升水电灵活性,在供需双侧开展了量化方法研究。首先,在灵活性供给侧,结合水电站历史运行特性,提出了一种考虑可获得性的水电灵活性供给能力量化方法,定义了水电灵活性变化特征区;其次,在灵活性需求侧,基于分位点回归理论,提出了响应新能源预测误差的数据驱动水电灵活性需求量化方法;最后,通过灵活性供需关系约束,将上述量化方法耦入短期调度模型,来验证所提方法的有效性及合理性。以云南电网为工程背景,仿真结果对比表明,该方法可有效认知水电灵活性供需关系,提升水电灵活性。与其他量化方法对比表明,该水电灵活性量化方法,可兼顾多方面综合要求,可获得性更高。
关键词(KeyWords): 水电;灵活性量化;提升机理;可获得性;风电;光伏
基金项目(Foundation): 国家自然科学基金项目(91547201,51879030)~~
作者(Author): 张俊涛;甘霖;程春田;李刚;李秀峰;赵珍玉;张楠男;
Email:
DOI: 10.13335/j.1000-3673.pst.2020.0108
参考文献(References):
- [1]程春田,武新宇,申建建,等.亿千瓦级时代中国水电调度问题及其进展[J].水利学报,2019,50(1):112-123.Cheng Chuntian,Wu Xinyu,Shen Jianjian,et al.A state-of-the-art review of China’s hydropower operations and the recent advances in the era of gigawatts[J].Journal of Hydraulic Engineering,2019,50(1):112-123(in Chinese).
- [2]中国气象局风能太阳能资源评估中心.中国风能资源的详查和评估[J].风能,2011(8):26-30.CMA Wind and Solar Resources Center.Investigation and evaluation of wind energy resources in the China[J].Wind Energy,2011(8):26-30(in Chinese).
- [3]沈义.我国太阳能的空间分布及地区开发利用综合潜力评价[D].兰州:兰州大学,2014.
- [4]中华人民共和国国家发展和改革委员会,国家能源局.能源生产和消费革命战略(2016—2030)[EB/OL].[2016-12-29]. http://www.gov.cn/xinwen/2017-04/25/5230568/files/286514af354e41578c57ca38d5c4935b.pdf.
- [5] Cheng Chuntian,Yang Lingzhi,Mirchi A,et al.China’s booming hydropower:systems modeling challenges and opportunities[J].Journal of Water Resources Planning&Management(ASCE),2017,143(1):02516002.
- [6]刘方,张粒子,蒋燕,等.电力市场环境下梯级水电站中长期调度与检修计划双层优化模型[J].电网技术,2018,42(5):1541-1548.Liu Fang,Zhang Lizi,Jiang Yan,et al.Bi-level optimal model of mid-long term scheduling and maintenance planning for cascade hydropower stations in electricity market environment[J].Power System Technology,2018,42(5):1541-1548(in Chinese).
- [7]苏承国,王沛霖,武新宇,等.考虑机组组合的梯级水电站短期调峰MILP模型[J].电网技术,2018,42(6):1883-1891.Su Chengguo,Wang Peilin,Wu Xinyu,et al.A compact MILP model for short-term peak shaving of cascaded hydropower plants considering unit commitment[J].Power System Technology,2018,42(6):1883-1891(in Chinese).
- [8]张利升,武新宇,曹瑞,等.多受端梯级水电站厂网多目标协调优化调度模型[J].电网技术,2018,42(12):3935-3940.Zhang Lisheng,Wu Xinyu,Cao Rui,et al.Multi-objective station-grid coordinated operation model for cascade hydropower systems with multiple power receiving regions[J].Power System Technology,2018,42(12):3935-3940(in Chinese).
- [9] Mohandes B,El Moursi M S,Hatziargyriou N D,et al.A review of power system flexibility with high penetration of renewables[J].IEEE Transactions on Power Systems,2019,34(4):3140-3155.
- [10]鲁宗相,李海波,乔颖.高比例可再生能源并网的电力系统灵活性评价与平衡机理[J].中国电机工程学报,2017,37(1):9-20.Lu Zongxiang,Li Haibo,Qiao Ying,et al.Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J].Proceedings of the CSEE,2017,37(1):9-20(in Chinese).
- [11] Lund P D,Lindgren J,Mikkola J,et al.Review of energy system flexibility measures to enable high levels of variable renewable electricity[J].Renewable and Sustainable Energy Reviews,2015,45:785-807.
- [12] Karimanzira D,Schwanenberg D,Allen C,et al.Short-term hydropower optimization and assessment of operational flexibility[J].Journal of Water Resources Planning and Management,2016,142(2):04015048.
- [13] Heydarian-Forushani E,Golshan M E H,Siano P.Evaluating the operational flexibility of generation mixture with an innovative techno-economic measure[J].IEEE Transactions on Power Systems,2018,33(2):2205-2218.
- [14] Lannoye E,Flynn D,O'Malley M.Evaluation of power system flexibility[J].IEEE Transactions on Power Systems,2012,27(2):922-931.
- [15]苏承国,申建建,王沛霖,等.基于电源灵活性裕度的含风电电力系统多源协调调度方法[J].电力系统自动化,2018,42(17):111-119.Su Chengguo,Shen Jianjian,Wang Peilin,et al.Coordinated dispatching method for wind-turbine-integrated power system with multi-type power sources based on power flexibility margin[J].Automation of Electric Power Systems,2018,42(17):111-119(in Chinese).
- [16] Loisel R. Power system flexibility with electricity storage technologies:A technical-economic assessment of a large-scale storage facility[J].International Journal of Electrical Power&Energy Systems,2012,42(1):542-552.
- [17] Askeland K,Bozhkova K N,Sorkn?s P.Balancing europe:can district heating affect the flexibility potential of norwegian hydropower resources?[J].Renewable Energy,2019(141):646-656.
- [18] Farahmand H,Jaehnert S,Aigner T,et al.Nordic hydropower flexibility and transmission expansion to support integration of North European wind power[J].Wind Energy,2015,18(6):1075-1103.
- [19] Gullberg A T.The political feasibility of Norway as the ‘green battery’of Europe[J].Energy Policy,2013,57:615-623.
- [20] Callaway D S,Hiskens I A.Achieving controllability of electric loads[J].Proceedings of the IEEE,2011,99(1):184-199.
- [21] Agency I E.Harnessing variable renewables-A guide to the balancing challenge[R].Paris,France:IEA,2011.
- [22] Li X,Li W,Zhang R,et al.Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings[J].Applied Energy,2020(258):1-20.
- [23] Kirschen D S,Dvorkin Y,Ortega-Vazquez M A.Assessing flexibility requirements in power systems[J].IET Generation,Transmission&Distribution,2014,8(11):1820-1830.
- [24] Makarov Y V,Loutan C,Ma J,et al.Operational impacts of wind generation on california power systems[J].IEEE Transactions on Power Systems,2009,24(2):1039-1050.
- [25] Lannoye E,Flynn D,O'Malley M.Transmission,variable generation,and power system flexibility[J]. IEEE Transactions on Power Systems,2015,30(1):57-66.
- [26] Holttinen H,Milligan M,Ela E,et al.Methodologies to determine operating reserves due to increased wind power[J].IEEE Transactions on Sustainable Energy,2012,3(4):713-723.
- [27] Huber M,Dimkova D,Hamacher T.Integration of wind and solar power in Europe:Assessment of flexibility requirements[J].Energy,2014,69:236-246.
- [28] Koenker R,Gilbert Bassett J.Regression quantiles[J].Econometrica,1978,46(1):33-50.
- [29] Morales J M,Conejo A J,Madsen H,et al.Integrating renewables in electricity markets:operational problems[M].London:Springer,2014.
- [30] Wu L,Shahidehpour M,Li Z.Comparison of scenario-based and interval optimization approaches to stochastic SCUC[J]. IEEE Transactions on Power Systems,2012,27(2):913-921.
- [31]申建建,张秀飞,曹瑞,等.水电富集电网大规模水电站群短期实用化调度方法[J].中国电机工程学报,2019,39(10):2816-2828.Shen Jianjian,Zhang Xiufei,Cao Rui,et al.Practical method for short-term operations of large-scale hydropower plants in power grids with rich hydropower[J].Proceedings of the CSEE,2019,39(10):2816-2827(in Chinese).
- [32] Shen J,Cheng C,Xiong C,et al.Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid[J].Energy,2016,95:433-446.
- [33] Heidarizadeh M,Shivaie M,Ahmadian M,et al.A risk-based optimal self-scheduling of cascaded hydro power plants in joint energy and reserve electricity markets[C]//2016 6th Conference on Thermal Power Plants(CTPP),Tehran, IRAN,2016:76-82.