一种基于多神经网络的组合负荷预测模型A Combination Load Forecasting Model Based on Multi-Neural Networks
张亚军;刘志刚;张大波;
摘要(Abstract):
针对BP神经网络、RBF神经网络和小波神经网络应用于负荷预测时所遇到的问题,提出了一种基于各种神经网络的组合预测模型。该模型为单输出的3层神经网络,即将3种神经网络的预测结果作为神经网络的输入,将实际负荷值作为神经网络的输出,使训练后的网络具有预测能力。该模型能降低单个神经网络的预测风险,提高预测精度。仿真结果表明,所提出的组合预测模型的精度高于其中任一单一网络模型,也高于传统的线性组合预测模型。
关键词(KeyWords): 组合负荷预测;BP神经网络;RBF神经网络;小波神经网络
基金项目(Foundation): 教育部霍英东青年教师基金资助项目(101060);; 四川省杰出青年基金项目(No.07JQ0075)
作者(Author): 张亚军;刘志刚;张大波;
Email:
DOI: 10.13335/j.1000-3673.pst.2006.21.005
参考文献(References):
- [1]牛东晓,曹树华,赵磊,等.电力负荷预测技术及其应用[M].北京:中国电力出版社,1998.
- [2]周佃民,管晓宏,孙婕,等.基于神经网络的电力系统短期负荷预测研究[J].电网技术,2002,26(2):10-13.Zhou Dianmin, Guan Xiaohong, Sun Jie, et al. A short-term load forecasting system based on BP artificial neural network[J]. Power System Technology, 2002, 26(2): 10-13(in Chinese).
- [3]马文晓,白晓民,沐连顺.基于人工神经网络和模糊推理的短期负荷预测方法[J].电网技术,2002,26(3):49-51.Ma Wenxiao, Bai Xiaomin, Mu Lianshun. Short term load forecasting using artificial neural network and fuzzy inference [J]. Power System Technology, 2002, 26(3): 49-51(in Chinese).
- [4]姜勇.基于模糊聚类的神经网络短期负荷预测方法[J].电网技术, 2003,27(2):45-49.Jiang Yong. Short-term load forecasting using a neural network based on fuzzy clustering[J]. Power System Technology, 2003, 27(2): 45-49(in Chinese).
- [5] RanaweeraDK, HubeleNF, Papalexopoulos AD. Application of radial basis function neural network model for short-term load forecasting[J] . IEE Proceedings-Generation , Transmission and Distribution, 1995, 142(1): 45-50.
- [6]金海峰,熊信艮,吴耀武.基于级联神经网络的短期负荷预测方法[J],电网技术,2002,26(3):49-51.Jin Haifeng, Xiong Xinyin, Wu Yaowu. A short-term load forecasting method based on cascade neural network[J]. Power System Technology, 2002, 26(3): 49-51 (in Chinese).
- [7] Cao Liangyue,Hong Yiguang,Fang Haiping, et al. Predicting chaotic time series with wavelet networks[J].Physica D, 1995, 85: 225-238.
- [8]张步涵,赵剑剑,刘小华,等.一种基于小波神经元网络的短期负荷预测方法[J].电网技术,2004,28(7):15-18.Zhang Buhan, Zhao Jianjian, Liu Xiaohua, etal. Short-term load forecasting based on wavelet neural network[J]. Power System Technology, 2004, 28(7): 15-18(in Chinese).
- [9]徐军华,刘天琪.基于小波分解和人工神经网络的短期负荷预测[J].电网技术,2004,28(8):30-33.Xu Junhua, Liu Tianqi. An approach to short-term load forecasting based on wavelet transform and artificial neural network[J]. Power System Technology, 2004, 28(8): 30-33(in Chinese).
- [10]牛东晓,邢棉,谢宏,等.短期电力负荷预测的小波神经元网络模型的研究[J].电网技术,1999,23(4):21-24.Niu Dongxiao, Xing Mian, Xie Hong, et al. Wavelet neural network model for short-term load forecasting[J]. Power System Technology, 1999, 23(4): 21-24(in Chinese).
- [11]邰能灵,侯志俭.小波模糊神经网络在电力系统短期负荷预测中的应用[J].中国电机工程学报,2004,24(1):24-29.Tai Nengling, Hou Zhijian. New short-term load forecasting principle with the wavelet transform fuzzy neural network for the power systems[J]. Proceedings of the CSEE, 2004, 24(1): 24-29(in Chinese).
- [12] Bates J M, Granger C W J. The combination of forecasts[J]. Operational Research Quarterly, 1969, 20: 451-468.
- [13]谢开贵,李春燕,周家启.基于神经网络的负荷组合预测模型研究[J].中国电机工程学报,2002,22(7):85-89.Xie Kaigui, Li Chunyan, Zhou Jiaqi. Research of the combination forecasting model for load based on artificial neural network [J]. Proceedings of the CSEE, 2002, 22(7): 85-89(in Chinese).
- [14]李林川,吕冬,武文杰.一种简化的电力系统负荷线性组合预测法[J].电网技术,2002,26(10):10-13.Li Linchuan, LüDong, Wu Wenjie. A linear combination based simplified load forecasting method for power system[J]. Power System Technology, 2002, 26(10): 10-13(in Chinese).
- [15] Hornik K M S, White H. Universal approximation of an unknown mapping and its deriva-fives using multilayer feedforward networks [J]. Neural Networks, 1990, 3: 551-560.
- [16]雷鸣,吴雅,杨叔子.非线性时间序列建模与预测的神经网络[J].华中理工大学学报,1993,21(1):47-52.Lei Ming, Wu Ya, Yang Shuzi. Non-linear time series modeling and forecasting using the neural network approach[J] . Journal of Huazhong University of Science & Technology, 1993, 21(1): 47-52(in Chinese).
- [17]梁海峰,涂光瑜,唐红卫.遗传神经网络在电力系统短期负荷预测中的应用[J].电网技术,2001,25(1):49-53.Liang Haifeng, Tu Guangyu, Tang Hongwei. Application of genetic algorithm neural network for short term load forecasting of power system[J]. Power System Technology, 2001, 25(1): 49-53(in Chinese).