基于随机聚焦粒子群算法的电力系统无功优化Reactive Power Optimization in Power System Based on Stochastic Focusing Particle Swarm Optimization
刘述奎;陈维荣;李奇;郑永康;张雪霞;
摘要(Abstract):
随机聚焦粒子群优化算法(stochastic focusing particle swarm optimization,SFPSO)是一种应用于连续空间的、具有较好的全局搜索能力和寻优速度的群体智能优化算法。该方法以最优控制原理为基础,以网损最小为目标函数。在IEEE30节点系统上进行了测试,仿真结果表明SFPSO算法在计算精度、收敛稳定性、寻优时间等方面都具有优势,能有效地应用于电力系统无功优化。
关键词(KeyWords): 电力系统;随机聚焦粒子群算法;无功优化;群体智能
基金项目(Foundation): 国家自然科学基金资助项目(60870004)~~
作者(Author): 刘述奎;陈维荣;李奇;郑永康;张雪霞;
Email:
DOI:
参考文献(References):
- [1]许文超,郭伟.电力系统无功优化的模型及算法综述[J].电力系统及其自动化学报,2003,15(1):100-104.
- [2]Momoh J A,Adapa R,El-hawary M E.A review of selected optimal power flow literature to1993I nonlinear and quadratic programming approaches[J].IEEE Transactions on Power Systems,1999,14(1):96-104.
- [3]Momoh J A,El-Hawary M E,Adapa R.A review of selected optimal power flow literature to1993II Newton,linear programming and interior point methods[J].IEEE Transactions on Power Systems,1999,14(1):105-111.
- [4]Kennedy J,Eberhart R C.Particle swarm optimization[C].Proc of the1995IEEE International Conference on Neural Networks,1995.
- [5]向铁元,周青山,李富鹏,等.小生境遗传算法在无功优化中的应用研究[J].中国电机工程学报,2005,25(17):49-51.
- [6]刘方,颜伟,David C Y,等.基于遗传算法和内点法的无功优化混合策略[J].中国电机工程学报,2005,25(15):67-72.
- [7]王淳,程浩忠.基于模拟植物生长算法的电力系统无功优化[J].电网技术,2006,30(21):38-41.
- [8]Kennedy J,Eberhart R.Particle swarm optimization[C].IEEE Int Conf on Neural Networks,Perth,Australia,1995.
- [9]袁晓辉,王乘,张勇传,等.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19.
- [10]赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法[J].中国电机工程学报,2005,25(5):2-7.
- [11]张文,刘玉田.自适应粒子群优化算法及其在无功优化中的应用[J].电网技术,2006,30(8):19-24.
- [12]Abido M A.Optimal power flow using particle swarm optimization[J].International Journal of Electrical Power&Energy Systems,2002,24(7):563-571.
- [13]Wu Q H,Cao Y J,Wen J Y.Optimal reactive power dispatch using an adaptive genetic algorithm[J].Int J Electr Power&Energy Syst,1998,20(8):563-569.
- [14]Liang J J,Qin A K.Suganthan P N,et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transaction on Evolutionary Computation,2006,10(3):67-82.
- [15]Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C].Proceedings of the2000Congress,2000.
- [16]Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C].Proceedings of the1999Congress on Evolutionary Computation,1999.