基于改进离散粒子群算法的电力系统机组组合问题Unit Commitment Based on Improved Discrete Particle Swarm Optimization
陈海良;郭瑞鹏;
摘要(Abstract):
提出一种新的离散粒子群算法。结合改进的自学习策略优化粒子群算法适用于求解电力系统中的机组组合(unit commitment,UC)问题。算法将UC问题分解为具有整型变量和连续变量的2个优化子问题,采用离散粒子群优化和原对偶内点法相结合的双层嵌套方法对外层机组启、停状态变量和内层机组功率经济分配子问题进行交替迭代优化求解。在处理约束问题时采用修正法代替传统的罚因子法,提高了解的质量。以10×2台机组组成的2个测试系统为算例,通过与其他算法结果进行比较分析,证明了该方法的可行性和有效性。仿真结果表明,该方法解决UC问题具有求解精度高和收敛速度快的优势。
关键词(KeyWords): 粒子群优化;离散;自学习策略;机组组合;修正法
基金项目(Foundation):
作者(Author): 陈海良;郭瑞鹏;
Email:
DOI: 10.13335/j.1000-3673.pst.2011.12.020
参考文献(References):
- [1]Senjyu T,Shimabukuro K,Uezato K.A fast technique for unit commitment problem by extended priority list[J].IEEE Trans on Power Systems,2003,18(2):881-888.
- [2]Wang C,Shahidehpour M.Optimal generation scheduling with romping costs[J].IEEE Trans on Power Systems,1995,10(1):60-67.
- [3]Ongsakul W,Petcharaks N.Unit commitment by enhanced adaptive Lagrangian relaxation[J].IEEE Trans on Power Systems,2004,19(1):620-628.
- [4]Mantawy A H,Abdel Magid Y L,Selim S Z.Unit commitment by tabu search[J].IEE Proceedings Generation,Transmission and Distribution,1998,145(1):56-64.
- [5]Simopoulos D N,Kavatza S D,Vournas C D.Unit commitment by an enhanced simulated annealing algorithm[J].IEEE Trans on Power Systems,2006,21(1):68-76.
- [6]Simon S P,Padhy N P,Anand R S.An ant colony system approach for unit commitment problem[J].IEEE Trans on Power Systems,2006,28(5):315-323.
- [7]高山,单渊达.遗传算法搜索优化及其在机组组合中的应用[J].中国电机工程学报,2001,21(3):45-48.Gao Shan,Shan Yuanda.Advanced genetic algorithm approach to unit commitment with searching optimization[J].Proceedings of the CSEE,2001,21(3):45-48(in Chinese).
- [8]Gaing Z.Discrete particle swarm optimization algorithm for unit commitment[C]//Proceedings of IEEE Power Engineering Society General Meeting.Toronto,Canada:IEEE,2003:418-424.
- [9]Bavafa M,Monsef H,Navidi N.A new hybrid approach for unit commitment using Lagrangian relaxation combined with evolutionary and quadratic programming[C]//Power and Energy Engineering Conference.Asia-Pacific:APPEEC,2009:1-6.
- [10]Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference On Neural Networks.Perth,Australia:IEEE,1995:1942-1948.
- [11]Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[C]//Proceedings of IEEE International Conference On Computational Cybernetics and Simulation.Orlando,FL,USA:IEEE,1997:4104-4108.
- [12]Liang J J,Qin A K,Suganthan P N,et al.Comprehensive learning partile swarm optimizer for global optimization of multimodal functions[J].IEEE Trans on Evolutionary Computation,2006(8):281-295.
- [13]郭三刚,管晓宏,翟桥柱.具有爬升约束机组组合的充分必要条件[J].中国电机工程学报,2005,25(24):18-23.Guo Sangang,Guan Xiaohong,Zhai Qiaozhu.A new necessary and sufficient condition for checking feasibility of a solution to unit commitment problems with ramp rate constraints[J].Proceedings of the CSEE,2005,25(24):18-23(in Chinese).
- [14]韩学山,柳焯.考虑发电机组输出功率速度限制的最优机组组合[J].电网技术,1994,18(6):11-16.Han Xueshan,Liu Zhuo.Optimal unit commitment consider unit’s ramp rate limits[J].Power System Technology,1994,18(6):11-16(in Chinese).
- [15]蔡超豪,蔡元宇.机组优化组合的遗传算法[J].电网技术,1997,21(1):44-47.Cai Chaohao,Cai Yuanyu.Optimization of unit commitment by genetic algorithm[J].Power System Technology,1997,21(1):44-47(in Chinese).
- [16]陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法[J].中国电机工程学报,1999,19(12):9-13.Chen Haoyong,Zhang Kaoshe,Wang Xifan.Evolutionary optimization method of power system unit commitment problem[J].Proceedings of the CSEE,1999,19(12):9-13(in Chinese).
- [17]陈烨,赵国波,刘俊勇,等.用于机组组合优化的蚁群粒子群混合算法[J].电网技术,2008,32(6):52-56.Chen Ye,Zhao Guobo,Liu Junyong,et al.An ant colony optimization and particle swarm optimization hybrid algorithm for unit commitment based on operate coding[J].Power System Technology,2008,32(6):52-56(in Chinese).