基于随机分布式嵌入框架及BP神经网络的超短期电力负荷预测Ultra Short-term Power Load Forecasting Based on Randomly Distributive Embedded Framework and BP Neural Network
李国庆;刘钊;金国彬;权然;
摘要(Abstract):
电力系统超短期负荷预测易受到气象、假日等多种因素共同作用的影响,因此,实现其精准预测较为困难。为提高预测精度,往往需要大量的历史数据进行训练。针对历史数据较少的新建初期电力系统,提出了一种基于随机分布式嵌入框架及BP神经网络的超短期电力负荷预测方法。首先,将电力系统中电力负荷变量、气象变量等各种状态变量的延迟变量视为独立的影响因素,采用BP神经网络算法针对不同组延迟变量分别进行训练和预测,得到多个预测值。然后,采用核密度估计法拟合多个预测值形成分布的概率密度函数。最后,通过期望估计法或聚合估计法计算得出电力负荷的最终预测值。选取实际负荷数据进行算例分析,结果表明,所提方法适用于训练数据较少的超短期负荷预测,且相较于几种常规预测算法具有更高的预测精度以及较强的稳定性。
关键词(KeyWords): 超短期负荷预测;随机分布式嵌入框架;BP神经网络;非线性动力系统;短期数据
基金项目(Foundation): 国家重点研发计划项目(2018YFB0904700)~~
作者(Author): 李国庆;刘钊;金国彬;权然;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.1612
参考文献(References):
- [1]唐聪岚,卢继平,谢应昭,等.基于改进数据流在线分割的超短期负荷预测[J].电网技术,2014,38(7):2014-2020.Tang Conglan,Lu Jiping,Xie Yingzhao,et al.Improved data stream on-line segmentation based ultra short-term load forecasting[J].Power System Technology,2014,38(7):2014-2020(in Chinese).
- [2]张锋,吴劲晖,张怡,等.基于负荷趋势的新型超短期负荷预测法[J].电网技术,2004,28(19):64-67.Zhang Feng,Wu Jinhui,Zhang Yi,et a1.A novel ultra-short term load forecasting based on load trend[J].Power System Technology,2004,28(19):64-67(in Chinese).
- [3] Wang Q,Zhang C,Ding Y,et al.Review of real-time electricity markets for integrating distributed energy resources and demand response[J].Applied Energy,2015(138):695-706.
- [4] Andrade de L C M,Silva da I N.Using intelligent system approach for very short-term load forecasting purposes[C]//2010 IEEE International Energy Conference,Manama,Bahrain,2010:694-699.
- [5]崔和瑞,彭旭.基于ARIMAX模型的夏季短期电力负荷预测[J].电力系统保护与控制,2015,43(4):108-114.Cui Herui,Peng Xu.Summer short-term load forecasting based on ARIMAX model[J].Power System Protection and Control,2015,43(4):108-114(in Chinese).
- [6]赵峰,孙波,张承慧.基于多变量相空间重构和卡尔曼滤波的冷热电联供系统负荷预测方法[J].中国电机工程学报,2016,36(2):399-406.Zhao Feng,Sun Bo,Zhang Chenghui.Cooling,heating and electrical load forecasting method for CCHP system based on multivariate phase space reconstruction and Kalman filter[J].Proceedings of the CSEE,2016,36(2):399-406(in Chinese).
- [7] Guan C,Luh P B,Michel L D,et al.Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation[J].IEEE Transactions on Power Systems,2013,28(4):3806-3817.
- [8]吴越强,吴文传,李飞,等.基于鲁棒Holt-Winter模型的超短期配变负荷预测方法[J].电网技术,2014,38(10):2810-2815.Wu Yueqiang,Wu Wenchuan,Li Fei,et al.Ultra-short term load forecasting using robust Holt-Winter in distribution network[J].Power System Technology,2014,38(10):2810-2815(in Chinese).
- [9]路轶,王民昆.基于短期负荷预测的超短期负荷预测曲线外推法[J].电力系统自动化,2006,30(16):102-104.Lu Yi,Wang Minkun.An ultra-short term load forecasting method based on short-term load forecasting[J].Automation of Electric Power Systems,2006,30(16):102-104(in Chinese).
- [10]张思远,何光宇,梅生伟,等.基于相似时间序列检索的超短期负荷预测[J].电网技术,2008,32(12):56-59.Zhang Siyuan,He Guangyu,Mei Shengwei,et al.Ultra-short term load forecasting based on similarity search in time-series[J].Power System Technology,2008,32(12):56-59(in Chinese).
- [11]王新,孟玲玲.基于EEMD-LSSVM的超短期负荷预测[J].电力系统保护与控制,2015,39(1):61-66.Wang Xin,Meng Lingling.Ultra-short-term load forecasting based on EEMD-LSSVM[J].Power System Protection and Control,2015,39(1):61-66(in Chinese).
- [12]张宇帆,艾芊,林琳,等.基于深度长短时记忆网络的区域级超短期负荷预测方法[J].电网技术,2019,43(6):1884-1892.Zhang Yufan,Ai Qian,Lin Lin,et al.A very short-term load forecasting method based on deep LSTM RNN at zone level[J].Power System Technology,2019,43(6):1884-1892(in Chinese).
- [13] Guan C,Luh P B,Michel L D,et al.Very short-term load forecasting:wavelet neural networks with data pre-filtering[J].IEEE Transactions on Power Systems,2013,28(1):30-41.
- [14] Wiktor C,Mo-Shing C,Very short-term load forecasting using artificial neural networks[J].IEEE Transactions on Power Systems,2000,15(1):293-298.
- [15]苏学能,刘天琪,曹鸿谦,等.基于Hadoop架构的多重分布式BP神经网络的短期负荷预测方法[J].中国电机工程学报,2017,37(17):4966-4973.Su Xueneng,Liu Tianqi,Cao Hongqian,et al.A multiple distributed BP neural networks approach for short-term load forecasting based on Hadoop framework[J].Proceedings of the CSEE,2017,37(17):4966-4973(in Chinese).
- [16] Ma Huanfei,Leng Siyang,Aihara Kazuyuki,et al.Randomly distributed embedding making short-term high-dimensional data predictable[J].Proceedings of the National Academy of Sciences,2018,115(43):9994-10002.
- [17] Takens F.Detecting strange attractors in turbulence[M].Berlin:Springer-Verlag,1981:366-381.
- [18] Sauer T,Yorke J A,Casdagli M.Embedology[J].Journal of Statistical Physics,1991,65(4):579-616.
- [19] Deyle E R,Sugihara G.Generalized theorems for nonlinear state space reconstruction[J].Plos One,2011,6(3):18295.
- [20]吴俊利,张步涵,王魁.基于Adaboost的BP神经网络改进算法在短期风速预测中的应用[J].电网技术,2012,36(9):221-225.Wu Junli,Zhang Buhan,Wang Kui.Application of Adaboost-based BP neural network for short-term wind speed forecast[J].Power System Technology,2012,36(9):221-225(in Chinese).
- [21]张明理,杨晓亮,滕云,等.基于主成分分析与前向反馈传播神经网络的风电场输出功率预测[J].电网技术,2011,35(3):83-87.Zhang Mingli,Yang Xiaoliang,Teng Yun,et al.Forecasting of wind farm generation output based on principal component analysis and back propagation neural network[J].Power System Technology,2011,35(3):83-87(in Chinese).
- [22]王贺,胡志坚,陈珍,等.基于集合经验模态分解和小波神经网络的短期风功率组合预测[J].电工技术学报,2013,28(9):137-144.Wang He,Hu Zhijian,Chen Zhen,et al.A hybrid model for wind power forecasting based on ensemble empirical mode decomposition and wavelet neural networks[J]. Transactions of China Electrotechnical Society,2013,28(9):137-144(in Chinese).
- [23]张丽,张涛,王福忠,等.基于柔性负荷响应特性的超短期预测方法[J].电力系统保护与控制,2019,47(9):27-34.Zhang Li,Zhang Tao,Wang Fuzhong,et al.Ultra-short-term forecasting method based on response characteristics of flexible load[J].Power System Protection and Control,2019,47(9):27-34(in Chinese).
- [24]彭显刚,郑伟钦,林利祥,等.考虑负荷自适应检测和修复的鲁棒极限学习机短期负荷预测方法[J].中国电机工程学报,2016,36(23):6409-6417.Peng Xiangang,Zheng Weiqin,Lin Lixiang,et al.Short-term load forecasting method based on outlier robust extreme learning machine considering adaptive load detection and repair[J].Proceedings of the CSEE,2016,36(23):6409-6417(in Chinese).
- [25]彭文,王金睿,尹山青.电力市场中基于Attention-LSTM的短期负荷预测模型[J].电网技术,2019,43(5):1745-1751.Peng Wen,Wang Jinrui,Yin Shanqing.Short-term load forecasting model based on Attention-LSTM in electricity market[J].Power System Technology,2019,43(5):1745-1751(in Chinese).
- [26]唐玮,钟士元,舒娇,等.基于GRA-LSSVM的配电网空间负荷预测方法研究[J].电力系统保护与控制,2018,46(24):76-82.Tang Wei,Zhong Shiyuan,Shu Jiao,et al.Research on spatial load forecasting of distribution network based on GRA-LSSVM method[J].Power System Protection and Control,2018,46(24):76-82(in Chinese).
- [27]孔祥玉,郑锋,鄂志君,等.基于深度信念网络的短期负荷预测方法[J].电力系统自动化,2018,42(5):133-138.Kong Xiangyu,Zheng Feng,E Zhijun,et al.Short term load forecasting method based on deep belief network[J].Automation of Electric Power Systems,2018,42(5):133-138(in Chinese).