基于萤火虫算法?广义回归神经网络的光伏发电功率组合预测Combined PV Power Forecast Based on Firefly Algorithm-Generalized Regression Neural Network
王昕;黄柯;郑益慧;李立学;邵凤鹏;贾立凯;徐清山;
摘要(Abstract):
随着光伏发电大容量地并入电网,其输出的随机性必将对大电网安全稳定运行造成影响,为此建立了一种变权重的光伏短期组合预测模型,首先通过主成分分析法(principal component analysis,PCA)将影响光伏出力的多重线性因素进行压缩、提取以简化模型输入变量的维数,然后将提取的第一主成分结合灰色关联度来筛选相似日样本,接着将样本分别带入最小二乘支持向量机、改进BP网络2种单一模型进行2次预测。第1次预测作为相似日预测,用来训练权重系数,训练方法是萤火虫算法优化的广义回归神经网络;第2次预测是待预测日的预测。仿真结果验证了所提模型的有效性。
关键词(KeyWords): 主成分分析法;灰色关联度;萤火虫算法;广义回归神经网络
基金项目(Foundation): 国家自然科学基金重点项目(61533012);; 上海市自然科学基金(14ZR1421800)~~
作者(Author): 王昕;黄柯;郑益慧;李立学;邵凤鹏;贾立凯;徐清山;
Email:
DOI: 10.13335/j.1000-3673.pst.2016.0943
参考文献(References):
- [1]Lorenz E,Hurka J,Heinemann D,et a1.Irradiance forecasting for the power prediction of grid-connected photovoltaic systems[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2009,2(1):2-10.
- [2]许洪华.中国光伏发电技术发展研究[J].电网技术,2007,31(20):7-11.Xu Honghua.The study on development of PV technology in China[J].Power System Technology,2007,31(20):7-11(in Chinese).
- [3]Kudo M,Nozaki Y,Endo H,et al.Forecasting electric power generation in a photovoltaic power system for an energy network[J].Electrical Engineering in Japan,2009,167(4):16-23.
- [4]Ding M,Wang L,Bi R.An ANN-based approach for forecasting the power output of photovoltaic system[J].Procedia Environmental Sciences,2011,11(1):1308-1315.
- [5]陈昌松,段善旭,殷进军.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9):153-158.Chen Changsong,Duan Shanxu,Yin Jinjun.Design of photovoltaic array power forecasting model based on neutral network[J].Transactions of China Electrotechnical Society,2009,24(9):153-158(in Chinese).
- [6]Methaprayoon K,Lee W J,Rasmiddatta S,et al.Multistage artificial neural network short-term load forecasting engine with front-end weather forecast[J].IEEE Transactions on Industry Applications,2007,43(6):1410-1416.
- [7]代倩,段善旭,蔡涛,等.基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J].中国电机工程学报,2011,31(34):28-35.Dai Qian,Duan Shanxu,Cai Tao,et al.Short-term PV generation system forecasting model without irradiation based on weather type clustering[J].Proceedings of the CSEE,2011,31(34):28-35(in Chinese).
- [8]Chen J L,Li G S,Wu S J.Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration[J].Energy Conversion and Management,2013,11(75):311-318.
- [9]朱永强,田军.最小二乘支持向量机在光伏功率预测中的应用[J].电网技术,2011,35(7):54-59.Zhu Yongqiang,Tian Jun.Application of least square support vector machine in photovoltaic power forecasting[J].Power System Technology,2011,35(7):54-59(in Chinese).
- [10]Liu Y Q,Shi J,Yang Y P,et al.Short-term wind-power prediction based on wavelet transform-support vector machine and statisticcharacteristics analysis[J].IEEE Transactions on Industry Applications,2012,48(4):1136-1141.
- [11]杨锡运,刘欢,张彬,等.基于熵权法的光伏输出功率组合预测模型[J].太阳能学报,2014,35(5):744-749.Yang Xiyun,Liu Huan,Zhang Bin,et al.A combination method for photovoltaic power forecasting based on entropy weight method[J].Acta Energiae Solaris Sinica,2014,35(5):744-749(in Chinese).
- [12]陈宁,沙倩,汤奕,等.基于交叉熵理论的风电功率组合预测方法[J].中国电机工程学报,2012,32(4):29-34.Chen Ning,Sha Qian,Tang Yi,et al.A combination method for wind power prediction based on cross entropy theory[J].Proceedings of the CSEE,2012,32(4):29-34(In Chinese).
- [13]Ishaque K,Salam Z.An improved modeling method to determine the model parameters of photovoltaic(PV)modules using differential evolution(DE)[J].Solar Energy,2011,85(9):2349-2359.
- [14]Brano V L,Orioli A,Ciulla G,et al.An improved five-parameter model for photovoltaic modules[J].Solar Energy Materials&Solar Cells,2010,94(8):1358-1370.
- [15]Freris L,Infield D.Renewable energy in power system[M].London:Wiley Publishing,2010:22-145.
- [16]KonatéA A,Pan H,Khan N,et al.Generalized regression and feed-forward back propagation neural networks in modelling porosity from geophysical well logs[J].Journal of Petroleum Exploration&Production Technology,2014,5(2):1-10.
- [17]Gandomi A H,Yang X S,Talatahari S,et al.Firefly algorithm with chaos[J].Communications in Nonlinear Science&Numerical Simulation,2013,18(1):89-98.
- [18]耿建军,吕卫民,董景荣.基于GRNN神经网络的变权组合预测的权重确定方法[J].数学的实践与认识,2011,41(3):86-93.Geng Jianjnn,LüWeimin,Dong Jingrong.A new method for the estimation of optimum weight coefficients of the weight changeable combination forecasts bases on the generalized regression neural network[J].Mathematics in Practice and Theory,2011,41(3):86-93(in Chinese).
- [19]刘文颖,门德月,梁纪峰,等.基于灰色关联度与LSSVM组合的月度负荷预测[J].电网技术,2012,36(8):228-232.Liu Wenying,Men Deyue,Liang Jifeng,et al.Monthly load forecasting based on grey relational degree and least squares support vector machine[J].Power System Technology,2012,36(8):228-232(in Chinese).