基于卷积神经网络的直流送端系统暂态过电压估算方法A Method Estimating Transient Overvoltage of HVDC Sending-end System Based on Convolutional Neural Network
陈厚合;张赫;王长江;魏俊红;张艳军;张嵩;
摘要(Abstract):
为有效预测大扰动过程中直流送端系统的暂态过电压,提出一种基于卷积神经网络(convolutionalneural networks,CNN)的直流送端系统暂态过电压估算方法。首先,基于CNN输入特征构建的基本原理,搭建具有多层隐含层的非线性网络结构,将广域量测装置采集的各节点电压、相角及功率作为输入层,依据电网节点的拓补关系及故障发生到切除的时间顺序进行拼接,得到表征电网状态的矩阵。然后,优化调整CNN的超参数,采用梯度下降法进行有监督训练,通过逐层优化输入层与卷积层之间的权重矩阵,实现关键特征值的自动提取,同时利用CNN的深层架构构建暂态过电压与输入数据间的映射模型,快速准确地估算直流送端系统暂态过电压。最后,对修改后的Nordic32交直流混合系统和广东电网系统进行分析,验证该方法的有效性和准确性。
关键词(KeyWords): 高压直流;卷积神经网络;暂态过电压;人工智能
基金项目(Foundation): 国家电网公司科技项目“千万千瓦级分层接入直流送受端系统动态行为机理和协调控制措施研究”(SGTYHT17-JS-199)~~
作者(Author): 陈厚合;张赫;王长江;魏俊红;张艳军;张嵩;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.1555
参考文献(References):
- [1]马进,赵大伟,钱敏慧,等.大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J].电网技术,2017,41(10):3112-3120.Ma Jin,Zhao Dawei,Qian Minhui,et al.Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J].Power System Technology,2017,41(10):3112-3120(in Chinese).
- [2]付磊,李卫良.特高压直流配套稳控系统的典型试验方法与应用[J].电网技术,2018,42(12):3850-3856.Fu Lei,Li Weiliang.Typical test scheme and application of security and stability control system for UHVDC project[J].Power System Technology,2018,42(12):3850-3856(in Chinese).
- [3]屠竞哲,张健,曾兵,等.直流换相失败及恢复过程暂态无功特性及控制参数影响[J].高电压技术,2017,43(7):2131-2139.Tu Jingzhe,Zhang Jian,Zeng Bing,et al.Effects of transient reactive power characteristics and control parameters on DC commutative failure and recovery process[J].High Voltage Engineering,2017,43(7):2131-2139(in Chinese).
- [4]冀肖彤.抑制HVDC送端交流暂态过电压的控制系统优化[J].电网技术,2017,41(3):721-728.Ji Xiaotong.Optimization of control system for suppressing HVDC transient overvoltage[J].Power System Technology,2017,41(3):721-728(in Chinese).
- [5]陈厚合,王长江,姜涛,等.基于投影能量函数和Pin-SVM的电力系统暂态稳定评估[J].电工技术学报,2017,32(11):67-76.Chen Houhe,Wang Changjiang,Jiang Tao,et al.Evaluation of power system transient stability based on projected energy function and pin-SVM[J].Transactions of China Electrotechnical Society,2017,32(11):67-76(in Chinese).
- [6]吴红斌,丁明.用于电力系统暂态稳定仿真的可变步长牛顿法[J].中国电机工程学报,2010,30(7):36-41.Wu Hongbin,Ding Ming.Newton method with variable step size for power system transient stability simulation[J].Proceedings of the CSEE,2010,30(7):36-41(in Chinese).
- [7] Eltigani D M,Ramadan K,Zakaria E.Implementation of transient stability assessment using artificial neural networks[C]//International Conference on Computing,Electrical and Electronics Engineering(ICCEEE).Khartoum:IEEE,2013:659-662.
- [8]王康,孙宏斌,张伯明,等.基于二维组合属性决策树的暂态稳定评估[J].中国电机工程学报,2009,29(S):17-24.Wang Kang,Sun Hongbin,Zhang Boming,et al.Transient stability assessment based on 2d combined attribute decision tree[J].Proceedings of the CSEE,2009,29(S):17-24(in Chinese).
- [9] Fei P Y,Jun C L,Nan L X.Stability region of droop-controlled distributed generation in autonomous microgrids[J]. IEEE Transactions on Smart Grid,2019,10(2):2288-2300.
- [10]姚德全,贾宏杰,赵帅.基于复合神经网络的电力系统暂态稳定评估和裕度预测[J].电力系统自动化,2013,37(20):41-46.Yao Dequan,Jia Hongjie,Zhao Shuai.Power system transient stability assessment and stability margin prediction based on compound neural network[J].Automation of Electric Power Systems,2013,37(20):41-46(in Chinese).
- [11]杨挺,赵黎媛,王成山.人工智能在电力系统及综合能源系统中的应用综述[J].电力系统自动化,2019,43(1):2-14.Yang Ting,Zhao Liyuan,Wang Chengshan.Review on application of artificial intelligence in power system and integrated energy system[J].Automation of Electric Power Systems,2019,43(1):2-14(in Chinese).
- [12]张宇航,邱才明,杨帆,等.深度学习在电网图像数据及时空数据中的应用综述[J].电网技术,2019,43(6):1865-1873.Zhang Yuhang,Qiu Caiming,Yang Fan,et al.Overview of application of deep learning with image data and spatio-temporal data of power grid[J].Power System Technology,2019,43(6):1865-1873(in Chinese).
- [13]张重远,岳浩天,王博闻,等.基于相似矩阵盲源分离与卷积神经网络的局部放电超声信号深度学习模式识别方法[J].电网技术,2019,43(6):1900-1906.Zhang Zhongyuan,Yue Haotian,Wang Bowen,et al.Pattern recognition of partial discharge ultrasonic signal based on similar matrix BSS and deep learning CNN[J].Power System Technology,2019,43(6):1900-1906(in Chinese).
- [14]王守相,陈海文,李小平,等.风电和光伏随机场景生成的条件变分自动编码器方法[J].电网技术,2018,42(6):1860-1867.Wang Shouxiang,Chen Haiwen,Li Xiaoping,et al.Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J].Power System Technology,2018,42(6):1860-1867(in Chinese).
- [15]蒋逸雯,李黎,李智威,等.基于深度语义学习的电力变压器运维文本信息挖掘方法[J].中国电机工程学报,2019,39(14):4162-4171.Jiang Yiwen,Li Li,Li Zhiwei,et al.An information mining method of power transformer operation and maintenance texts based on deep semantic learning[J].Proceedings of the CSEE,2019,39(14):4162-4171(in Chinese).
- [16] Dong T B,JunY,Li X P,et al.Representational learning approach for power system transient stability assessment based on convolutional neural network[J].The Journal of Engineering,2017,2017(13):1847-1850.
- [17]安军,艾士琪,刘道伟,等.基于短时受扰轨迹的电力系统暂态稳定评估方法[J].电网技术,2019,43(5):1690-1697.An Jun,Ai Shiqi,Liu Daowei,et al.A power system transient stability assessment method based on short-time disturbed trajectories[J].Power System Technology,2019,43(5):1690-1697(in Chinese).
- [18]田芳,周孝信,史东宇,等.基于卷积神经网络综合模型和稳态特征量的电力系统暂态稳定评估[J].中国电机工程学报,2019,39(14):4025-4032.Tian Fang,Zhou Xiaoxin,Shi Dongyu,et al.Power system transient stability assessment based on comprehensive convolutional neural network model and steady-state features[J].Proceedings of the CSEE,2019,39(14):4025-4032(in Chinese).
- [19]高昆仑,杨帅,刘思言,等.基于一维卷积神经网络的电力系统暂态稳定评估[J].电力系统自动化,2019,43(12):18-26.Gao Kunlun,Yang Shuai,Liu Siyan,et al.Transient stability assessment for power system based on one-dimensional convolutional neural network[J].Automation of Electric Power Systems,2019,43(12):18-26(in Chinese).
- [20]李洋麟,江全元,颜融,等.基于卷积神经网络的电力系统小干扰稳定评估[J].电力系统自动化,2019,43(2):50-59.Li Yanglin,Jiang Quanyuan,Yan Rong,et al.Small-signal stability assessment of power system based on convolutional neural network[J].Automation of Electric Power Systems,2019,43(2):50-59(in Chinese).
- [21] Yi J Z,Chao L,Chen F,et al.Load shedding scheme with deep reinforcement learning to improve short-term voltage stability[C]//2018 IEEE Innovative Smart Grid Technologies-Asia(ISGT Asia).IEEE,2018:13-18.
- [22]刘威,张东霞,王新迎,等.基于深度强化学习的电网紧急控制策略研究[J].中国电机工程学报,2018,38(1):109-119.Liu Wei,Zhang Dongxia,Wang Xinying,et al.A decision making strategy for generating unit tripping under emergency circumstances based on deep reinforcement learning[J].Proceedings of the CSEE,2018,38(1):109-119(in Chinese).
- [23] Fukushima K.Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J].Biological Cybernetics,1980,36(4):193-202.
- [24]万晓琪,宋辉,罗林根,等.卷积神经网络在局部放电图像模式识别中的应用[J].电网技术,2019,43(6):2219-2226.Wan Xiaoqi, Song Hui, Luo Lingen, et al. Application of convolutional neural networks in pattern recognition of partial discharge image[J].Power System Technology,2019,43(6):2219-2226(in Chinese).
- [25] Goodfellow I,Bengio Y,Courville A.Deep learning[M].MIT Press,2016.
- [26]盛戈皞,涂光瑜,罗毅.人工智能技术在电力系统无功电压控制中的应用[J].电网技术,2002,26(6):22-27.Sheng Gehao,Tu Guangyu,Luo Yi.Application of artificial intelligence techniques in reactive power/voltage control of power system[J]. Power System Technology, 2002, 26(6):22-27(in Chinese).
- [27]闫龙川,白东霞,刘万涛,等.人工智能技术在云计算数据中心能量管理中的应用与展望[J].中国电机工程学报,2019,39(1):31-42.Yan Longchuan,Bai Dongxia,Liu Wantao,et al.Application and prospect of artificial intelligence technology in energy management and optimization for cloud computing data center[J].Proceedings of the CSEE,2019,39(1):31-42(in Chinese).
- [28]吴裔慧.基于卷积神经网络的场景理解方法研究[D].北京:清华大学,2015.
- [29]刘梓权,王慧芳,曹靖,等.基于卷积神经网络的电力设备缺陷文本分类模型研究[J].电网技术,2018,42(2):644-650.Liu Ziquan,Wang Huifang,Cao Jing,et al.A classification model of power equipment defect texts based on convolutional neural network[J].Power System Technology,2018,42(2):644-650(in Chinese).
- [30]姜涛,刘方正,陈厚合,等.基于多通道快速傅里叶小波变换的电力系统主导振荡模式及模态协同辨识方法研究[J].电力自动化设备,2019,39(7):125-132.Jiang Tao, Liu Fangzheng, Chen Houhe, et al. Cooperated identification method of dominant oscillation modes and mode shapes for power system based on multi-channel fast Fourier transform based continuous wavelet transform[J]. Electric Power Automation Equipment,2019,39(7):125-132(in Chinese).
- [31]张放,程林,黎雄,等.广域测量系统时延的数字仿真方法及实时数字仿真器实现[J].电力系统自动化,2013,37(17):99-105.Zhang Fang,Cheng Lin,Li Xiong,et al.A digital simulation technique for time delay in wide area measurement system and its realization[J].Automation of Electric Power Systems,2013,37(17):99-105(in Chinese).
- [32]徐舒玮,邱才明,张东霞,等.基于深度学习的输电线路故障类型辨识[J].中国电机工程学报,2019,39(1):65-74.Xu Shuwei,Qiu Caiming,Zhang Dongxia,et al.A deep learning approach for fault type identification of transmission line[J].Proceedings of the CSEE,2019,39(1):65-74(in Chinese).
- [33]陈金富,朱乔木,石东源,等.利用时空相关性的多位置多步风速预测模型[J].中国电机工程学报,2019,39(7):2093-2106.Chen Jinfu,Zhu Qiaomu,Shi Dongyuan,et al.A multi-step wind speed prediction model for multiple sites leveraging spatio-temporal correlation[J].Proceedings of the CSEE,2019,39(7):2093-2106(in Chinese).
- [34]周念成,廖建权,王强钢,等.深度学习在智能电网中的应用现状分析与展望[J].电力系统自动化,2019,43(4):180-197.Zhou Niancheng,Liao Jianquan,Wang Qianggang,et al.Analysis and prospect of deep learning application in smart grid[J].Automation of Electric Power Systems,2019,43(4):180-197(in Chinese).
- [35] Krishayya P C S,Adapa R,Holm M,et al.IEEE guide for planning DC links terminating at AC locations having low short-circuit capacities.part I:AC/DC system interaction phenomena[R].France:CIGRE,1997.