多目标进化算法求解无功优化问题的比较与评估Comparison and Evaluation on Multi-Objective Evolutionary Algorithm for Optimal Reactive Power Flow
李鸿鑫;李银红;李智欢;
摘要(Abstract):
多目标进化算法在电力系统无功优化领域已有广泛应用,目前研究主要集中于引入某种单一算法求解该问题,难以全面客观地分析算法的寻优性能。因此选取当前典型的多目标进化算法,从整体角度对它们在无功优化问题中的应用展开比较研究。与传统设定偏好参数、将多目标问题转化为单目标问题的方法不同,直接采用计及系统网损与电压偏移的多目标模型。以IEEE 30节点标准系统的多目标无功优化为算例,从非支配解集质量和多样性、帕累托前沿分布广阔性和均匀性及收敛速度等角度,比较算法的寻优性能,分析其优势或不足。在评估各种算法计算性能的基础上提出了进一步研究的展望。相关结论对多目标进化算法在无功优化问题中的应用和改进具有一定的参考价值。
关键词(KeyWords): 无功优化;多目标;进化算法;帕累托最优;比较与评估
基金项目(Foundation): 国家重点基础研究发展计划项目(973项目)(2009CB219701);; 国家自然科学基金项目(50937002)~~
作者(Author): 李鸿鑫;李银红;李智欢;
Email:
DOI: 10.13335/j.1000-3673.pst.2013.06.006
参考文献(References):
- [1]He R,Taylor G A,Song Y H.Multi-objective optimal reactive powerflow including voltage security and demand profile classification[J].International Journal of Electrical Power&Energy Systems,2008,30(5):327-336.
- [2]王玉荣,万秋兰,陈昊.基于模糊聚类和学习自动机的多目标无功优化[J].电网技术,2012,36(7):224-230.Wang Yurong,Wan Qiulan,Chen Hao.Multi-objective reactive poweroptimization by fuzzy cluster and learning automata[J].Power SystemTechnology,2012,36(7):224-230(in Chinese).
- [3]舒隽,张粒子,刘易,等.电力市场下日无功计划优化模型和算法的研究[J].中国电机工程学报,2005,25(13):80-85.Shu Jun,Zhang Lizi,Liu Yi,et al.Study on the model and algorithmof daily reactive power scheduling in electricity market[J].Proceedings of the CSEE,2005,25(13):80-85(in Chinese).
- [4]刘述奎,陈维荣,李奇,等.基于自适应聚焦粒子群优化算法的电力系统多目标无功优化[J].电网技术,2009,33(13):48-53.Liu Shukui,Chen Weirong,Li Qi,et al.Power system multi-objectivereactive power optimization based on adaptive focusing particleswarm optimization algorithm[J].Power System Technology,2009,33(13):48-53(in Chinese).
- [5]邱晓燕,张子健,李兴源.基于改进遗传内点算法的电网多目标无功优化[J].电网技术,2009,33(13):27-31.Qiu Xiaoyan,Zhang Zijian,Li Xingyuan.Multi-objective reactivepower optimization based on improved genetic-interior pointalgorithm[J].Power System Technology,2009,33(13):27-31(inChinese).
- [6]Zhang Wen,Liu Yutian.Multi-objective reactive power and voltagecontrol based on fuzzy optimization strategy and fuzzy adaptiveparticle swarm[J].International Journal of Electrical Power&EnergySystems,2008,30(9):525-532.
- [7]Goldberg E D.Genetic algorithms in search,optimization,andmachine learning[M].Boston:Addison-Wesley,1989:67-87.
- [8]Abido M A,Bakhashwain J M.Optimal VAR dispatch using amultiobjective evolutionary algorithm[J].International Journal ofElectrical Power&Energy Systems,2005,27(1):13-20.
- [9]邱威,张建华,刘念.自适应多目标差分进化算法在计及电压稳定性的无功优化中的应用[J].电网技术,2011,35(8):81-87.Qiu Wei,Zhang Jianhua,Liu Nian.A self-adaptive multi-objectivedifferential evolution algorithm for reactive power optimizationconsidering voltage stability[J].Power System Technology,2011,35(8):81-87(in Chinese).
- [10]冯士刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J].电工技术学报,2007,22(12):146-151.Feng Shigang,Ai Qian.Application of fast and elitist non-dominatedsorting generic algorithm in multi-objective reactive poweroptimization[J].Transactions of China Electrotechnical Society,2007,22(12):146-151(in Chinese).
- [11]Varadarajan M,Swarup K S.Solving multi-objective optimal powerflow using differential evolution[J].IEE Proceedings of Generation,Transmission Distribution,2008,2(5):720-730.
- [12]李智欢,段献忠.多目标进化算法求解无功优化问题的对比分析[J].中国电机工程学报,2010,30(10):57-65.Li Zhihuan,Duan Xianzhong.Comparison and analysis ofmultiobjective evolutionary algorithm for reactive power optimization[J].Proceedings of the CSEE,2010,30(10):57-65(in Chinese).
- [13]Fonseca C M,Fleming P J.Multiobjective optimization and multipleconstraint handling with evolutionary algorithms-Part I:A unifiedformulation[J].IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans,1998,28(1):26-37.
- [14]Abraham A,Jain L.Evolutionary multiobjective optimization:theoretical advances and applications[M].New York:SpringerScience,2005:1-302.
- [15]Carlos C C A.Evolutionary multi-objective optimization:somecurrent research trends and topics that remain to be explored[J].Frontiers of Computer Science in China,2009,3(1):18-30.
- [16]Das S,Suganthan P N.Differential evolution:a survey of thestate-of-the-art[J].IEEE Transactions on Evolutionary Computation,2011,15(1):4-31.
- [17]Coello C A C,Pulido G T,Lechuga M S.Handling multipleobjectives with particle swarm optimization[J].IEEE Transactions onEvolutionary Computation,2004,8(3):256-279.
- [18]Joshua K D,David C W.Approximating the nondominated frontusing the pareto archived evolution strategy[J].EvolutionaryComputation,2000,8(2):149-172.
- [19]Huang V L,Suganthan P N,Liang J J.Comprehensive learningparticle swarm optimizer for solving multiobjective optimizationproblems[J].International Journal of Intelligent Systems,2006,21(2):209-226.
- [20]Robic T,Filipic B.DEMO:Differential evolution for multiobjectiveoptimization[C]//Evolutionary Multi-Criterion Optimization.Guanajuato,Mexico:Springer,2005:520-533.
- [21]Musrrat A,Patrick S,Millie P.An efficient differential evolutionbased algorithm for solving multi-objective optimization problems[J].European Journal of Operational Research,2012,217(2):404-416.
- [22]Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjectivegenetic algorithm:NSGA-II[J].IEEE Transactions on EvolutionaryComputation,2002,6(2):182-197.
- [23]Eckart Z,Kalyanmoy D,Lothar T.Comparison of multiobjectiveevolutionary algorithms:empirical results[J].EvolutionaryComputation,2000,8(2):173-195.
- [24]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社,2009:40.
- [25]Tsai Shangjeng,Sun Tsungying,Liu Chancheng,et al.An improvedmulti-objective particle swarm optimizer for multi-objectiveproblems[J].Expert Systems with Applications,2010,37(8):5872-5886.
- [26]张伯明,陈寿孙,严正.高等电力网络分析[M].2版.北京:清华大学出版社,2007:325-328.
- [27]Liang C H,Chung C Y,Wong K P,et al.Study of differentialevolution for optimal reactive power flow[J].IEE Proceedings ofGeneration,Transmission Distribution,2007,1(2):253-260.
- [28]Vrugt J A,Robinson B A,Hyman J M.Self-adaptive multimethodsearch for global optimization in real-parameter spaces[J].IEEETransactions on Evolutionary Computation,2009,13(2):243-259.
- [29]Jasper V A,Bruce R A.Improved evolutionary optimization fromgenetically adaptive multimethod search[J].Proceedings of theNational Academy of Sciences of the United States of America,2007,104(3):708-711.
- [30]Santiago M,Antonio L,Jose-Maria P.A new methodology for theautomatic creation of adaptive hybrid algorithms[J].Intelligent DataAnalysis,2012,16(1):3-23.