基于稀疏表示理论的特高压交流变压器声信号盲分离研究Blind Separation of UHV Power Transformer Acoustic Signal Preprocessing Based on Sparse Representation Theory
周东旭;王丰华;党晓婧;张欣;刘顺桂;
摘要(Abstract):
运行中的变压器声信号由其机械结构振动经空气传播形成,易受周围环境影响,且所含干扰信号具有较大的不确定性,给基于声信号的变压器状态监测带来不利影响。为有效获取反映变压器运行状态的声信号,从特高压交流变压器声信号的声学特征出发,依据声信号的集合经验模态分解(ensembled empirical mode decomposition,EEMD)结果,提出了基于稀疏表示理论的特高压交流变压器声信号盲分离方法,即通过构建K-奇异值分解(K-singularvalue decomposition,K-SVD)字典和应用正交匹配追踪算法,得到了成分相对单一的特高压交流变压器声信号,有效抑制了特高压交流变压器声信号中的干扰成分。对某1000kV变电站主变声信号的计算结果表明:基于EEMD算法和稀疏表示理论能有效地对特高压交流变压器声信号中包含的环境噪声和人说话声等干扰成分进行盲分离,具有自适应性强、计算效率高和重构误差低的优点,可为基于声信号的特高压交流变压器状态监测提供重要数据支持。
关键词(KeyWords): 特高压变压器;EEMD算法;K-SVD字典;盲分离;声信号;稀疏表示理论
基金项目(Foundation): 国家重点研发计划项目(2017YFB0902700)~~
作者(Author): 周东旭;王丰华;党晓婧;张欣;刘顺桂;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.2248
参考文献(References):
- [1]吴晓文,周年光,彭继文,等.电力变压器噪声特性与相关因素分析[J].电力科学与技术学报,2018,33(3):81-86.Wu Xiaowen,Zhou Nianguang,Peng Jiwen,et al.Noise characteristic and relevant factors analysis of power transformer[J].Journal of Electric Power Science and Technology,2018,33(3):81-86(in Chinese).
- [2]张景晨,刘元庆,李文昱,等.高压换流变压器声功率反演算法研究[J].电网技术,2020,44(6):2369-2376.Zhang Jingchen,Liu Yuanqing,Li Wenyu,et al.Research on the sound power inversion algorithm of high voltage converter transformer[J].Power System Technology,2020,44(6):2369-2376(in Chinese).
- [3] Zhao S,Pan L,Li B.The study of transformer fault acoustic signal processing based on HHT and wavelet contour[C]//2009 WRI Global Congress on Intelligent Systems.Xiamen,China:IEEE,2009:262-266.
- [4]潘亮亮,赵书涛,李宝树.基于区间能量提取的变压器声测诊断[J].变压器,2010,47(4):61-65.Pan Liangliang,Zhao Shutao,Li Baoshu.Transformer acoustic emission diagnosis based on interval energy extraction[J].Transformer,2010,47(4):61-65(in Chinese).
- [5]王丰华,王邵菁,陈颂,等.基于改进MFCC和VQ的变压器声纹识别模型[J].中国电机工程学报,2017,37(5):1535-1543.Wang Fenghua,Wang Shaojing,Chen Song,et al.Transformer voiceprint recognition model based on improved MFCC and VQ[J].Proceedings of the CSEE,2017,37(5):1535-1543(in Chinese).
- [6] Zou L,Guo Y,Liu H,et al.A method of abnormal states detection based on adaptive extraction of transformer vibro-acoustic signals[J].Energies,2017,10(12):1-18.
- [7]马春雷,谢荣斌,赵莉华,等.变压器可听声信号特征分析[J].电力大数据,2018,21(2):18-26.Ma Chunlei,Xie Rongbin,Zhao Lihua,et al.Characteristic analysis of transformer audible acoustic signals[J].Power Systems and Big Data,2018,21(2):18-26(in Chinese).
- [8]谢荣斌,马春雷,张丽娟,等.基于改进K-means聚类的变压器异常识别模型[J].电力大数据,2018,21(5):24-30.Xie Rongbin,Ma Chunlei,Zhang Lijuan,et al.Power transformer abnormal state recognition model based on improved K-means clustering[J].Power Systems and Big Data,2018,21(5):24-30(in Chinese).
- [9] Shi Y,Ji S,Zhang F,et al.Multi-frequency acoustic signal under short-circuit transient and its application on the condition monitoring of transformer winding[J].IEEE Transactions on Power Delivery,2019,34(4):1666-1673.
- [10]郭俊,汲胜昌,沈琪,等.盲源分离技术在振动法检测变压器故障中的应用[J].电工技术学报,2017,27(10):68-78.Guo Jun,Ji Shengchang,Shen Qi,et al.Blind source separation technology for the detection of transformer fault based on vibration method[J].Transaction of China Electrotechnical Society,2017,27(10):68-78(in Chinese).
- [11]刘宇舜,程登峰,夏令志,等.基于单通道盲源分离算法的局部放电特高频信号去噪方法[J].电工技术学报,2018,33(23):5625-5636.Liu Yushun,Cheng Dengfeng,Xia Lingzhi,et al.Partial discharge ultra-high frequency signal de-noising method based on single-channel blind source separation algorithm[J].Transaction of China Electrotechnical Society,2018,33(23):5625-5636(in Chinese).
- [12]林顺富,李扬,汤波,等.基于改进FastICA及偏最小二乘法的系统谐波阻抗估计[J].电网技术,2018,42(1):308-314.Lin Shunfu,Li Yang,Tang Bo,et al. System harmonic impedance estimation based on improved fastica and partial least squares[J].Power System Technology,2018,42(1):308-314(in Chinese).
- [13]王文飞,周雒维,李绍令,等.采用改进CPSO动态搜索时频原子的电能质量扰动信号去噪方法[J].电网技术,2018,42(12):4129-4137.Wang Wenfei,Zhou Luowei,Li Shaoling,et al.A time-frequency atoms dynamic search method for power quality disturbance signalde-noising based on improved chaotic particle swarm optimization[J]. Power System Technology, 2018, 42(12):4129-4137(in Chinese).
- [14]王庆月,任帮月,宋浏阳,等.基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法[J].机械工程学报,2019,55(7):35-43.Wang Qingyue, Ren Bangyue, Song Liuyang, et al. Sparse representation method based on termination criteria improved K-SVD dictionary learning for feature enhancement[J].Journal of Mechanical Engineering,2019,55(7):35-43(in Chinese).
- [15] Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A-Mathematical Physical&Engineering Sciences,1998(454):903-995.
- [16] Yang J,Wright J,Huang T S,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873.
- [17] Aharon M,Elad M,Bruckstein A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
- [18] Tropp J A,Gilbert A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.