电力用户用电特征选择与行为画像User Electricity Consumption Feature Selection and Behavioral Portrait
赵晋泉;夏雪;刘子文;徐春雷;苏大威;闪鑫;
摘要(Abstract):
我国交直流大电网的安全稳定运行与新能源的消纳对需求侧响应提出了较高要求,电力用户画像对需求侧响应的实施具有重要意义。文章提出了一种电力用户用电特征选择与行为画像方法。首先,通过构造聚合回报指标,兼顾集聚度和分离度,实现了最优分类数目的自动确定,并在此基础上完成k-means聚类;然后,将最大相关最小冗余准则应用于电力用户用电特征选取,兼顾了有效性和精简性,通过遍历法求得优质特征集;再采用打分制对优质特征进行量化,通过雷达图和柱状图等进行展示,实现了用户用电行为画像。最后通过算例分析表明了所提方法的有效性。
关键词(KeyWords): 用电行为画像;特征选择;最大相关最小冗余准则;聚合回报指标;聚类分析
基金项目(Foundation): 国家重点研发计划项目(2017YFB0902600);; 国家电网有限公司科技项目(SGJS0000DKJS1700840)~~
作者(Author): 赵晋泉;夏雪;刘子文;徐春雷;苏大威;闪鑫;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.2138
参考文献(References):
- [1]中共中央国务院.关于进一步深化电力体制改革的若干意见(中发[2015]9号)[Z].2015.
- [2]李扬,王蓓蓓,李方兴.灵活互动的智能用电展望与思考[J].电力系统自动化,2015,39(17):2-9.Li Yang,Wang Beibei,Li Fangxing.Outlook and thinking of flexible and interactive utilization of intelligent power[J].Automation of Electric Power Systems,2015,39(17):2-9(in Chinese).
- [3]陈志明,胡震云.UGC网站用户画像研究[J].计算机系统应用,2017,26(1):24-30.Chen Zhiming,Hu Zhenyun.User portrait study on UGC website[J]. Journal of Computer Applications, 2017, 26(1):24-30(in Chinese).
- [4]费鹏,林鸿飞,杨亮,等.一种用于构建用户画像的多视角融合框架[J].计算机科学,2018,45(1):179-182,204.Fei Peng,Lin Hongfei,Yang Liang,et al.Multi-view ensemble framework for constructing user profile[J].Computer Science,2018,45(1):179-182,204(in Chinese).
- [5]吕辉,许道强,仲春林,等.基于电力大数据的标签画像技术与应用研究[J].电力信息与通信技术,2017,15(2):43-48.Lv Hui,Xu Daoqiang,Zhong Chunlin,et al.Study on tag portrait technology based on electric power big data and its application[J].Electric Power Information and Communication Technology,2017,15(2):43-48(in Chinese).
- [6]王成亮,郑海雁.基于模糊聚类的电力客户用电行为模式画像[J].电测与仪表,2018,55(18):77-81.Wang Chengliang, Zheng Haiyan. A portrait of electricity consumption behavior mode of power users based on fuzzy clustering[J].Electrical Measurement&Instrumentation,2018,55(18):77-81(in Chinese).
- [7]罗有志,熊华斌.基于差异化密度聚类的电力客户画像分析[J].湖南电力,2017,37(S2):110-112.Luo Youzhi, Xiong Huabing. Customer portrait analysis on differential density clustering[J].Hunan Electric Power,2017,37(S2):110-112(in Chinese).
- [8]陆俊,朱炎平,彭文昊,等.智能用电用户行为分析特征优选策略[J].电力系统自动化,2017,41(5):58-63,83.Lu Jun,Zhu Yanping,Peng Wenhao,et al.Feature selection strategy for electricity consumption behavior analysis in smart grid[J].Automation of Electric Power Systems,2017,41(5):58-63,83(in Chinese).
- [9] Peng Hanchuan,Long Fuhui,Ding Chris.Feature selection based on mutual information criteria of max-dependency,max-relevance and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238.
- [10]辜超,杨祎,张晓星,等.基于最大相关最小冗余准则的变压器故障诊断特征选择[J].电工电能新技术,2018,37(7):84-89.Gu Chao,Yang Yi,Zhang Xiaoxing,et al.Feature selection for transformer fault diagnosis based on maximal relevance and minimal redundancy criterion[J]. Advanced Technology of Electrical Engineering and Energy,2018,37(7):84-89(in Chinese).
- [11]李扬,顾雪平.基于改进最大相关最小冗余判据的暂态稳定评估特征选择[J].中国电机工程学报,2013,33(34):179-186,27.Li Yang, Gu Xueping. Feature selection for transient stability assessment based on improved maximal relevance and minimal redundancy criterion[J].Proceedings of the CSEE,2013,33(34):179-186,27(in Chinese).
- [12]赵永宁,叶林.区域风电场短期风电功率预测的最大相关-最小冗余数值天气预报特征选取策略[J].中国电机工程学报,2015,35(23):5985-5994.Zhao Yongning,Ye Lin.A numerical weather prediction feature selection approach based on minimal-redundancy-maximal-relevance strategy for short-term regional wind power prediction[J].Proceedings of the CSEE,2015,35(23):5985-5994(in Chinese).
- [13]潘超,秦本双,何瑶,等.基于优化FCM聚类的RELM风速预测[J].电网技术,2018,42(3):842-848.Pan Chao,Qin Benshuang,HE Yao,et al.Wind speed forecasting of regularized ELM based on optimized FCM clustering[J]. Power System Technology,2018,42(3):842-848(in Chinese).
- [14]赵莉,候兴哲,胡君,等.基于改进k-means算法的海量智能用电数据分析[J].电网技术,2014,38(10):2715-2720.Zhao Li,Hou Xingzhe,Hu Jun,et al.Improved k-means algorithm based analysis on massive data of intelligent power utilization[J].Power System Technology,2014,38(10):2715-2720(in Chinese).
- [15]廖伟涵,郭创新,金宇,等.基于四阶段预处理与GBDT的油浸式变压器故障诊断方法[J].电网技术,2019,43(6):2195-2203.Liao Weihan,Guo Chuangxin,Jin Yu,et al.Oil-immersed transformer fault diagnosis method based on four-stage preprocessing and GBDT[J].Power System Technology,2019,43(6):2195-2203(in Chinese).
- [16]王保义,胡恒,张少敏.差分隐私保护下面向海量用户的用电数据聚类分析[J].电力系统自动化,2018,42(2):121-127.Wang Baoyi, Hu Heng, Zhang Shaomin. Differential privacy protection based clustering analysis of electricity consumption data for massive consumers[J].Automation of Electric Power Systems,2018,42(2):121-127(in Chinese).
- [17]彭春华,余愿,孙惠娟.基于源网荷协同优化的配电网光储联合系统规划[J].电网技术,2019,43(11):3944-3951.Peng Chunhua,Yu Yuan,Sun Huijuan.Planning of combined PV-ESS system for distribution network based on source-network-load collaborative optimization[J].Power System Technology,2019,43(11):3944-3951(in Chinese).
- [18]宋易阳,李存斌,祁之强.基于云模型和模糊聚类的电力负荷模式提取方法[J].电网技术,2014,38(12):3378-3383.Song Yiyang,Li Cunbin,Qi Zhiqiang.Extraction of power load patterns based on cloud model and fuzzy clustering[J].Power System Technology,2014,38(12):3378-3383(in Chinese).
- [19]陈烨,吴浩,史俊祎,等.奇异值分解方法在日负荷曲线降维聚类分析中的应用[J].电力系统自动化,2018,42(3):105-111.Chen Ye,Wu Hao,Shi Junyi,et al.Application of singular value decomposition algorithm to dimension-reduced clustering analysis of daily load profiles[J].Automation of Electric Power Systems,2018,42(3):105-111(in Chinese).
- [20]何哲楠,吴浩,程祥,等.基于变电站-用户双层结构的变电站负荷聚类研究[J].电网技术,2019,43(8):2983-2991.He Zhenan,Wu Hao,Cheng Xiang,et al.Substation load clustering based on substation-consumer two-level structure[J].Power System Technology,2019,43(8):2983-2991(in Chinese).
- [21]周开乐,杨善林,丁帅,等.聚类有效性研究综述[J].系统工程理论与实践,2014,34(9):2417-2431.Zhou Kaile,Yang Shanlin,Ding Shuai,et al.On cluster validation[J].Systems Engineering-Theory&Practice,2014,34(9):2417-2431(in Chinese).
- [22]张斌,庄池杰,胡军,等.结合降维技术的电力负荷曲线集成聚类算法[J].中国电机工程学报,2015,35(15):3741-3749.Zhang Bin,Zhuang Chijie,Hu Jun,et al.Ensemble clustering algorithm combined with dimension reduction techniques for power load profiles[J].Proceedings of the CSEE,2015,35(15):3741-3749(in Chinese).
- [23]宋军英,何聪,李欣然,等.基于特征指标降维及熵权法的日负荷曲线聚类方法[J].电力系统自动化,2019,43(20):65-76.Song Junying,He Cong,Li Xinran,et al.Daily load curve clustering method based on feature index dimension reduction and entropy weight method[J].Automation of Electric Power Systems,2019,43(20):65-76(in Chinese).
- [24]张素香,刘建明,赵丙镇,等.基于云计算的居民用电行为分析模型研究[J].电网技术,2013,37(6):1542-1546.Zhang Suxiang, Liu Jianming, Zhao Bingzhen, et al. Cloud computing-based analysis on residential electricity consumption behavior[J].Power System Technology,2013,37(6):1542-1546(in Chinese).
- [25]张承畅,张华誉,罗建昌,等.基于云计算和改进K-means算法的海量用电数据分析方法[J].计算机应用,2018,38(1):159-164.Zhang Chengchang,Zhang Huayu,Luo Jianchang,et al.Massive data analysis of power utilization based on improved K-means algorithm and cloud computing[J].Journal of Computer Applications,2018,38(1):159-164(in Chinese).
- [26]原媛,顾洁,黄薇,等.互信息在电力系统中长期负荷预测中的应用[J].华东电力,2009,37(2):236-239.Yuan Yuan,Gu Jie,Huang Wei,et al.Application of mutual information to power system medium and long-term load forecasting[J].East China Electric Power,2009,37(2):236-239(in Chinese).
- [27]姚旭,王晓丹,张玉玺,等.基于粒子群优化算法的最大相关最小冗余混合式特征选择方法[J].控制与决策,2013,28(3):413-417,423.Yao Xu,Wang Xiaodan,Zhang Yuxi,et al.A maximum relevance minimum redundancy hybrid feature selection algorithm based on particle swarm optimization[J].Control and Decision,2013,28(3):413-417,423(in Chinese).
- [28] Commission for Energy Regulation.CER smart metering projectelectricity customer behavior trial,1st edition[DB/OL].[2020-05-05].https://www.ucd.ie/issda/data/commissionforenergyregulationcer/.
- [29] Forina M,et al.Wine data set[DB/OL].(1991-07-01)[2020-05-11].http://archive.ics.uci.edu/ml/datasets/Wine.