基于风机运行边界分析的电网频率控制方法Frequency Control Method in Grid Based on Boundary Analysis of Wind Turbine Operation
赵熙临;林震宇;付波;
摘要(Abstract):
风电渗透率的提高,使电网惯性及相对备用容量降低,对电网负荷频率控制带来新的挑战,风机参与电力系统频率调节的研究为解决上述问题提供了新的途径。首先,基于风机单机模型,提出了快速动能提取的惯性控制方法,并探讨了其与桨距角控制的互补性,通过惯性调整最大化,为减少风机桨距角调节负担提供支持;其次,在电力系统有功缺额及风机调频能力边界分析的基础上,提出了风机桨距角参与调频的驱动策略,旨在降低桨距角参与调频的程度,并减少风机参与调频过程中桨距角调节的次数。仿真结果说明,在满足电网调频要求的情况下,所设计的控制方法可最大限度地减小桨距角调整的幅度及频次,并有效提高电网调频效果。
关键词(KeyWords): 电网频率;风机有功控制;边界分析;次优功率控制;桨距角控制
基金项目(Foundation): 国家自然科学基金项目(61473116,61603127)~~
作者(Author): 赵熙临;林震宇;付波;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.2268
参考文献(References):
- [1]李世春,邓长虹,龙志君,等.风电场等效虚拟惯性时间常数计算[J].电力系统自动化,2016,40(7):22-29.Li Shichun,Deng Changhong,Long Zhijun,et al.Calculation of equivalent virtual inertial time constant of wind farm[J].Automatic of Electric Power Systems,2016,40(7):22-29(in Chinese).
- [2] Mohandes B,Moursi M S E,Hatziargyriou N,et al.A review of power system flexibility with high penetration of renewables[J].IEEE Transactions on Power Systems,2019,34(4):3140-3155.
- [3]姚亚鑫,刘锋,刘璋玮,等.面向长期调频的风机非线性下垂控制设计[J].电网技术,2018,42(6):1845-1852.Yao Yaxin,Liu Feng,Liu Zhangwei,et al.Nonlinear droop control of VSWTs for sustained frequency regulation[J].Power System Technology,2018,42(6):1845-1852(in Chinese).
- [4]李军徽,冯喜超,严干贵,等.高风电渗透率下的电力系统调频研究综述[J].电力系统保护与控制,2018,46(2):163-170.Li Junhui,Feng Xichao,Yan Gangui,et.al,Survey on frequency regulation technology in high wind penetration power system[J],Power System Protection and Control,2018,46(2):163-170(in Chinese).
- [5]高澈,田新首,李琰,等.基于运行状态评估的双馈风机自适应虚拟同步发电机控制[J].电网技术,2018,42(2):517-523.Gao Che,Tian Xinshou,Li Yan,et al.Adaptive virtual synchronous generator control of DFIG based on operation state evaluation[J].Power System Technology,2018,42(2):517-523(in Chinese).
- [6] Attya A B,Dominguez-Garcia J L,Anaya-Lara O.A review on frequency support provision by wind power plants:Current and future challenges[J].Renewable and Sustainable Energy Reviews,2018,81:2071-2087.
- [7] Abdulhameed A,Ahmad B,Hassan E.Primary frequency response enhancement for future low inertia power systems using hybrid control technique[J].Energies,2018,11(4):699.
- [8]赵晶晶,吕雪,符杨,等.基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J].电工技术学报,2015,30(5):59-68.Zhao Jingjing,LüXue,Fu Yang,et al.Frequency regulation of the wind/photovoltaic/diesel microgrid based on DFIG cooperative strategy with variable coefficients between virtual inertia and over-speed control[J],Transactions of China Electrotechnical Society,2015,30(5):59-68(in Chinese).
- [9] Ochoa D, Martinez S. Fast-frequency response provided by DFIG-wind turbines and its impact on the grid[J].IEEE Transactions on Power Systems,2017,32(5):4002-4011.
- [10]唐西胜,苗福丰,齐智平,等.风力发电的调频技术研究综述[J].中国电机工程学报,2014,34(25):4304-4314.Tang Xisheng,Miao Fufeng,Qi Zhiping,et al.Survey on frequency control of wind power[J].Proceedings of the CSEE,2014,34(25):4304-4314(in Chinese).
- [11] Wang Y,Meng J,Zhang X,et al.Control of PMSG-based wind turbines for system inertial response and power oscillation damping[J].IEEE Transactions on Sustainable Energy,2015,6(2):565-574.
- [12] Ana F G,Emilio G L,Eduard M,et al.Power systems with high renewable energy sources:a review of inertia and frequency control strategies over time[J].Renewable and Sustainable Energy Reviews,2019,15:109369.
- [13] Zhang X,Zha X,Yue S,et al.A frequency regulation strategy for wind power based on limited over-speed de-loading curve partitioning[J].IEEE Access,2018,6:22938-22951
- [14] Pahasa J,Ngamroo I.Coordinated control of wind turbine blade pitch angle and PHEVs using MPCS for load frequency control of microgrid[J].IEEE Systems Journal,2016,10(1):97-105.
- [15] Wang S,Tomsovic K.Fast frequency support from wind turbine generators with auxiliary dynamic demand control[J]. IEEE Transactions on Power Systems,2019,34(5):3340-3348.
- [16]付媛,王毅,张祥宇,等.变速风电机组的惯性与一次调频特性分析及综合控制[J].中国电机工程学报,2014,34(27):4706-4716.Fu Yuan,Wang Yi,Zhang Xiangyu,et al.Analysis and integrated control of inertia and primary frequency regulation forvariable speed wind turbines[J]. Proceedings of the CSEE, 2014, 34(27):4706-4716(in Chinese).
- [17] Ochoa D,Martinez S.Frequency dependent strategy for mitigating wind power fluctuations of a doubly-fed induction generator wind turbine based on virtual inertia control and blade pitch angle regulation[J].Renewable Energy,2018,128:108-124.
- [18]张旭,陈云龙,岳帅,等.风电参与电力系统调频技术研究的回顾与展望[J].电网技术,2018,42(6):1793-1803.Zhang Xu,Chen Yunlong,Yue Shuai,et al.Retrospect and prospect of research on frequency regulation technology of power system by wind power[J].Power System Technology,2018,42(6):1793-1803(in Chinese).
- [19] Zhang Z S,Sun Y Z,Lin J,et al.Coordinated frequencyregulation by doubly fed induction generator-based wind power plants[J].IET Renew. Power Gener.,2012,6(1):38-47.
- [20] Wang D,Gao X,Meng K,et al.Utilization of kinetic energy from wind turbine for grid connections:a review paper[J].IET Renewable Power Generation,2018,12(6):615-624.
- [21] Zhao H,Wu Q,Guo,Q,et.al.Distributed model predictive control of a wind farm for optimal active power control part I:clustering-based wind turbine model linearization[J]. IEEE Transactions on Sustainable Energy 2017,6,831-839.
- [22]陈珩.电力系统稳态分析(第三版)[M].北京:中国电力出版社,2007.
- [23] Moawwad A, El-Saadany E, El Moursi M S. Dynamic security-constrained automatic generation control(AGC)of integrated AC/DC power networks[J].IEEE Transactions on Power Systems,2018,33(4):3875-3885.
- [24] Attya A B T,Hartkopf T.Control and quantification of kinetic energy released by wind farms during power system frequency drops[J].IET Renewable Power Generation,2013,7(3):210-224.
- [25] Dreidy M,Mokhlis H,Mekhilef S.Inertia response and frequency control techniques for renewable energy sources:a review[J].Renewable and Sustainable Energy Reviews,2017,69:144-155.