灰色神经网络模型在线估算锂离子电池SOHOnline Estimation of Lithium-Ion Battery State of Health Using Grey Neural Network
韦海燕;陈孝杰;吕治强;王峥峥;潘海鸿;陈琳;
摘要(Abstract):
锂离子电池是一个复杂的电化学动态系统,难以通过单一的监测电池内部的物理和化学特性实现健康状态(state of health,SOH)在线估算。为此提出以欧姆内阻增加量、极化内阻增加量和极化电容减少量作为电池的健康因子(health indicator,HI),并引入灰色神经网络离线训练以HI为输入,电池容量退化量为输出的灰色神经网络模型,最后通过在线构建电池HI实现电池SOH估算。实验结果表明所提出的HI能够有效表征电池健康状态,灰色神经网络模型与BP神经网络模型相比,具有更高的SOH在线估算精度,估算误差不超过2%。
关键词(KeyWords): 灰色神经网络;锂离子电池;SOH估算;健康因子
基金项目(Foundation): 国家自然科学基金项目(51267002,51667006);; 广西自然科学基金资助项目(2015GXNSFAA139287);; 广西制造系统与先进制造技术重点实验室项目(1514030S002);; 广西研究生教育创新计划项目(YCSW2017038)~~
作者(Author): 韦海燕;陈孝杰;吕治强;王峥峥;潘海鸿;陈琳;
Email:
DOI: 10.13335/j.1000-3673.pst.2017.0522
参考文献(References):
- [1]Bi J,Zhang T,Yu H,et al.State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter[J].Applied Energy,2016(182):558-568.
- [2]姜久春,马泽宇,李雪,等.基于开路电压特性的动力电池健康状态诊断与估计[J].北京交通大学学报,2016,40(4):92-98.Jiang Jiuchun,Ma Zeyu,Li Xue,et al.State of health diagnosis and estimation of power lithium-ion batteries based on open circuit voltage characteristic[J].Journal of Beijing Jiaotong University,2016,40(4):92-98(in Chinese).
- [3]Han X,Ouyang M,Lu L,et al.A comparative study of commercial lithium ion battery cycle life in electric vehicle:Capacity loss estimation[J].Journal of Power Sources,2014(268):658-669.
- [4]Andre D,Appel C,Soczka-Guth T,et al.Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J].Journal of Power Sources,2013,224:20-27.
- [5]刘大同,周建宝,郭力萌,等.锂离子电池健康评估和寿命预测综述[J].仪器仪表学报,2015,36(1):1-16.Liu Datong,Zhou Jianbao,Guo Limeng,et al.Survey on lithium-ion battery health assessment and cycle life estimation[J].Chinese Journal of Scientific Instrument,2015,36(1):1-16(in Chinese).
- [6]Lin C,Tang A,Wang W.A review of SOH estimation methods in lithium-ion batteries for electric vehicle applications[J].Energy Procedia,2015(75):1920-1925.
- [7]Liu D,Pang J,Zhou J,et al.Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J].Microelectronics Reliability,2013,53(6):832-839.
- [8]Galeotti M,CinàL,Giammanco C,et al.Performance analysis and SOH(state of health)evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J].Energy,2015,89:678-686.
- [9]Prasad G K,Rahn C D.Model based identification of aging parameters in lithium ion batteries[J].Journal of Power Sources,2013(232):79-85.
- [10]Zou Y,Hu X,Ma H,et al.Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J].Journal of Power Sources,2015(273):793-803.
- [11]Du J,Liu Z,Wang Y,et al.An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles[J].Control Engineering Practice,2016,54:81-90.
- [12]He Y,Shen J,Shen J,et al.State of health estimation of lithium-ion batteries:A multiscale Gaussian process regression modeling approach[J].Aiche Journal,2015,61(5):1589-1600.
- [13]庞景月,马云彤,刘大同,等.锂离子电池剩余寿命间接预测方法[J].中国科技论文,2014,9(1):28-36.Pang Jingyue,Ma Yuntong,Liu Datong,et al.Indirect remaining useful life prognostics for lithium-ion battery[J].China Science Paper,2014,9(1):28-36(in Chinese).
- [14]Tong S,Klein M P,Park J W.On-line optimization of battery open circuit voltage for improved state-of-charge and state-of-health estimation[J].Journal of Power Sources,2015(293):416-428.
- [15]Liu D,Zhou J,Liao H,et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems Man&Cybernetics Systems,2015,45(6):915-928..
- [16]Widodo A,Shim M,Caesarendra W,et al.Intelligent prognostics for battery health monitoring based on sample entropy[J].Expert Systems with Applications,2011,38(9):11763-11769.
- [17]葛少云,贾鸥莎,刘洪.基于遗传灰色神经网络模型的实时电价条件下短期电力负荷预测[J].电网技术,2012,36(1):224-229.Ge Shaoyun,Jia Ousha,Liu Hong.A gray neural network model improved by genetic algorithm for short-term load forecasting in price-sensitive environment[J].Power System Technology,2012,36(1):224-229(in Chinese).
- [18]熊瑞.基于数据模型融合的电动车辆动力电池组状态估计研究[D].北京:北京理工大学,2014.