电力视觉边缘智能:边缘计算驱动下的电力深度视觉加速技术Power Vision Edge Intelligence: Power Depth Vision Acceleration Technology Driven by Edge Computing
马富齐;王波;董旭柱;王红霞;罗鹏;周胤宇;
摘要(Abstract):
电力物联网和透明电网的背景下,电力系统智能终端感知的海量视觉影像对传统的云计算处理模式提出了重大挑战,边缘计算作为云计算的重要补充已经得到了电力系统的广泛关注。为此,首先梳理了边缘计算的演变历程,阐述了电力视觉边缘智能的基本概念,然后构建了云–边–端协同的电力视觉边缘智能结构框架,重点讨论了边缘计算驱动下边缘智能的关键技术,最后列举了电力视觉边缘智能的几种典型应用场景。
关键词(KeyWords): 边缘智能;电力深度视觉;边缘计算;智能巡视;深度学习
基金项目(Foundation): 国家自然科学基金项目(51777142)~~
作者(Author): 马富齐;王波;董旭柱;王红霞;罗鹏;周胤宇;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.2382
参考文献(References):
- [1]荆孟春,王继业,程志华,等.电力物联网传感器信息模型研究与应用[J].电网技术,2014,38(2):532-537.Jing Mengchun,Wang Jiye,Cheng Zhihua,et al.Research and application of sensor information model in power internet of things[J].Power System Technology,2014,38(2):532-537(in Chinese).
- [2]王飞跃,张军,张俊,等.工业智联网:基本概念、关键技术与核心应用[J].自动化学报,2018,44(9):1606-1617.Wang Feiyue,Zhang Jun,Zhang Jun,et al.Industrial internet of minds:concept,technology and application[J].Acta Automatica Sinica,2018,44(9):1606-1617(in Chinese).
- [3]段莹,李文锋.工业物联网推动智能制造—解读《工业无线传感器网络抗毁性关键技术研究》[J].中国机械工程,2019,30(18):2263-2267.
- [4]吕军,栾文鹏,刘日亮,等.基于全面感知和软件定义的配电物联网体系架构[J].电网技术,2018,42(10):3108-3115.LüJun,Luan Wenpeng,Liu Riliang,et al.Architecture of distribution internet of things based on widespread sensing&software defined technology[J].Power System Technology,2018,42(10):3108-3115(in Chinese)
- [5]吴克河,王继业,李为,等.面向能源互联网的新一代电力系统运行模式研究[J].中国电机工程学报,2019,39(4):966-978.Wu Kehe,Wang Jiye,Li Wei,et al.Research on the operation mode of new generation electric power system for the future energy internet[J].Proceedings of the CSEE,2019,39(4):966-978(in Chinese).
- [6]杨庆,孙尚鹏,司马文霞,等.面向智能电网的先进电压电流传感方法研究进展[J].高电压技术,2019,45(2):349-367.Yang Qing,Sun Shangpeng,Sima Wenxia,et al.Progress of advanced voltage/current sensing techniques for smart grid[J].High Voltage Engineering,2019,45(2):349-367(in Chinese).
- [7]葛磊蛟,王守相,瞿海妮.智能配用电大数据存储架构设计[J].电力自动化设备,2016,36(6):194-202.Ge Leijiao,Wang Shouxiang,Qu Haini.Design of storage frame-work for big data of SPDU[J].Electric Power Automation Equipment,2016,36(6):194-202(in Chinese).
- [8]张晓华,刘道伟,李柏青,等.智能全景系统概念及其在现代电网中的应用体系[J].中国电机工程学报,2019,39(10):2885-2894.Zhang Xiaohua,Liu Daowei,Li Baiqing,et al.The concept of intelligent panoramic system and its application system in modern power grid[J].Proceedings of the CSEE,2019,39(10):2885-2894(in Chinese).
- [9]刘志颖,缪希仁,陈静,等.电力架空线路巡检可见光图像智能处理研究综述[J].电网技术,2020,44(3):1057-1069.Liu Zhiying,Miao Xiren,Chen Jing,et al.Review of visible image intelligent processing for transmission line inspection[J]. Power System Technology,2020,44(3):1057-1069(in Chinese).
- [10]王德文.基于云计算的电力数据中心基础架构及其关键技术[J].电力系统自动化,2012,36(11):67-72.Wang Dewen. Basic framework and key technology for a new generation of data center in electric power corporation based on cloud computation[J].Automation of Electric Power Systems,2012,36(11):67-72(in Chinese).
- [11] Wang L J,Chen Z L,Hua D,et al.Semantic segmentation of transmission lines and their accessories based on UAV-taken images[J].IEEE Access,2019(7):80829-80839.
- [12]林刚,王波,彭辉,等.基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J].电力自动化设备,2019,39(5):220-225.Lin Gang,Wang Bo,Peng Hui,et al.Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN[J].Electric Power Automation Equipment,2019,39(5):220-225(in Chinese).
- [13] Hu Z L,He T,Zeng Y H,et al.Fast image recognition of transmission tower based on big data[J].Protection and Control of Modern Power Systems,2018,3(15):1-10.
- [14]刘云鹏,裴少通,武建华,等.基于深度学习的输变电设备异常发热点红外图片目标检测方法[J].南方电网技术,2019,13(2):27-33.Liu Yunpeng,Pei Shaotong,Wu Jianhua,et al.Deep learning based target detection method for abnormal hot spots infrared images of transmission and transformation equipment[J]. Southern Power System Technology,2019,13(2):27-33(in Chinese).
- [15]漆灿,李庆武,郑云海,等.基于智能视觉物联网的变电站红外监测系统[J].电力系统保护与控制,2018,46(15):135-141.Qi Can,Li Qingwu,Zheng Yunhai,et al.Infrared monitoring system for substation based on intelligent visual internet of things[J].Power System Protection and Control,2018,46(15):135-141(in Chinese).
- [16] Long X T,Cui W P,Zheng Z,et al.Safety helmet wearing detection based on deep learning[C]//2019 IEEE 3rd Information Technology,Networking, Electronic and Automation Control Conference(ITNEC).Chengdu,China:IEEE,2019:2495-2499.
- [17]施辉,陈先桥,杨英.改进YOLO v3的安全帽佩戴检测方法[J].计算机工程与应用,2019,55(11):213-220.Shi Hui,Chen Xianqiao,Yang Ying.Safety helmet wearing detection method of improved YOLO v3[J]. Computer Engineering and Applications,2019,55(11):213-220(in Chinese).
- [18]广州日报.广州全面启动世界一流配电网建设变电站数量已达353座![EB/OL].(2019-02-27). http://power.in-en.com/html/power-2311800.shtml.
- [19]施巍松,张星洲,王一帆,等.边缘计算:现状与展望[J].计算机研究与发展,2019,56(1):69-89.Shi Weisong,Zhang Xingzhou,Wang Yifan,et al.Edge computing:state-of-the-art and future directions[J].Journal of Computer Research and Development,2019,56(1):69-89(in Chinese).
- [20]周知,于帅,陈旭.边缘智能:边缘计算与人工智能融合的新范式[J].大数据,2019,5(2):56-66.Zhou Zhi,Yu Shuai,Chen Xu.Edge intelligence:a new nexus of edge computing and artificial intelligence[J].Big Data Research,2019,5(2):56-66(in Chinese).
- [21]李彬,贾滨诚,陈宋宋,等.边缘计算在电力供需领域的应用展望[J].中国电力,2018,51(11):154-162.Li Bin,Jia Bincheng,Chen Songsong,et al.Prospect of application of edge computing in the field of supply and demand[J].Electric Power,2018,51(11):154-162(in Chinese).
- [22]谢玮,夏水斌,何行,等.基于边缘计算的电力末端融合系统的优化[J].电测与仪表,2019,56(16):61-66.Xie Wei,Xia Shuibin,He Xing,et al.Optimization of power end fusion system based on edge computation[J].Electrical Measurement and Instrumentation,2019,56(16):61-66(in Chinese).
- [23] Wang Y,Min S,Wang X,et al.Mobile-edge computing:partial computation offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications,2016,64(10):1-1.
- [24]龚钢军,罗安琴,陈志敏,等.基于边缘计算的主动配电网信息物理系统[J].电网技术,2018,42(10):3128-3135.Gong Gangjun,Luo Anqin,Chen Zhimin,et al.Cyber physical system of active distribution network based on edge computing[J].Power System Technology,2018,42(10):3128-3135(in Chinese).
- [25] Pallis G.Insight and perspectives for content delivery networks[J].Commum Acm,2006,49(1):101-106.
- [26] Solozabal R,Sanchoyerto A,Atxutegi E,et al.Exploitation of mobile edge computing in 5G distributed mission-critical push-to-talk service deployment[J].IEEE Access,2018(6):37665-37675.
- [27] Hu Y C,Patel M,Sabella D,et al.Mobile edge computing—a key technology towards 5G[J].ESTI White Paper,2015(11):1-16.
- [28] Bonomi F,Milito R,Zhu J,et al.Fog computing and its role in the internet of things[C]//Edition of the MCC Workshop on Mobile Cloud Computing.San Jose,USA:the MCC Workshop on Mobile Cloud Computing,2012:13-16.
- [29] Tao Z,Tao Z,Shi W.Fog computing[J].IEEE Internet Computing,2017,21(2):4-6.
- [30] Zhang D,Haider F,St-Hilaire M,et al.Model and algorithms for the planning of fog computing networks[J].IEEE Internet of Things Journal,2019,6(2):3873-3884.
- [31] Qi Q L,Tao F.A smart manufacturing service system based on edge computing,fog computing,and cloud computing[J].IEEE Access,2019(7):86769-86777.
- [32] Shi W,Cao J,Zhang Q,et al.Edge computing:vision and challenges[J].IEEE Internet of Things Journal,2016,3(5):637-646.
- [33] Zhou Z,Chen X,Li E,et al.Edge intelligence:paving the last mile of artificial intelligence with edge computing[J].Proceedings of the IEEE,2019,107(8):1738-1762.
- [34]王波,马富齐,董旭柱,等.电力深度视觉:基本概念、关键技术与应用场景[J].广东电力,2019,32(9):3-10.Wang Bo,Ma Fuqi,Dong Xuzhu,et al.Power depth vision:basic concepts,key technologies and application scenarios[J].Guangdong Electric Power,2019,32(9):3-10(in Chinese).
- [35]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55-69.Wang Kejun,Zhao Yandong,Xing Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13(1):55-69(in Chinese).
- [36]万维.基于深度学习的目标检测算法研究及应用[D].成都:电子科技大学,2015.
- [37] Tensorflow.在移动设备和IoT设备上部署机器学习模型[EB/OL].(2018-10-23).https://www.tensorflow.org/lite.
- [38] Chen T,Li M,Li Y,et al.MXNet:a flexible and efficient machine l e a r n i n g l i b r a r y f o r h e t e r o g e n e o u s d i s t r i b u t e d s y s t e ms[J/O L]. C o m p u t e r S c i e n c e, 2 0 1 5:1-6[2 0 1 9-11-0 1].http://arxiv.org/abs/1512.01274v1.
- [39] Zhang X,Wang Y,Shi W.pCAMP:performance comparison of machine learning packages on the edges[J/OL].Computer Science,2018:1-6[2018-12-19]. http://www. usenix.org/conference/hotedge18/presentation/zhang.
- [40] Zoph B,Le Q V.Neural architecture search with reinforcement learning[C]//International Conference on Learning Representations(ICLR).Toulon,France:ICLR,2017:1-16.
- [41] Baker B,Gupta O,Naik N,et al.Designing neural network architectures using reinforcement learning[C]//International Conference on Learning Representations(ICLR).Toulon,France:ICLR,2017:1-18.
- [42] Weng Y,Zhou T,Liu L,et al.Automatic convolutional neural architecture search for image classification under different scenes[J].IEEE Access,2019(7):38495-38506.
- [43] Weng Y,Zhou T,Li Y,et al.NAS-unet:neural architecture search for medical image segmentation[J].IEEE Access,2019(7):44247-44257.
- [44] Elsken T,Metzen J H,Hutter F.Simple and efficient archiecture search for convolutional neural networks.International Conference on Learning Representations(ICLR)[C]//Vancouver,BC,Canada:ICLR,2018:1-14.
- [45] Elsken T,Metzen J H,Hutter F.Neural architecture search:a survey[J].Journal of Machine Learning Research,2019(20):1-21.
- [46] Luo H,Wu J,Lin W.Thinet:a filter level pruning methodfor deep neural network compression[C]//IEEE International Conference on Computer Vision(ICCV).Venice,Italy:IEEE,2017:5068-5076.
- [47] Lei W,Han Y,Peng C N,et al.Novel dynamic network pruning via smooth initialization and its potential applications in machine learning based security solutions[J].IEEE Access,2019(7):91667-91678.
- [48] Wu X,Shao Z,Ou P,et al.Application of quantisation-based deep-learning model compression in JPEG image steganalysis[J].The Journal of Engineering,2018,2018(16):1402-1406.
- [49]饶川,陈靓影,徐如意,等.一种基于动态量化编码的深度神经网络压缩方法[J].自动化学报,2019,45(10):1960-1968.Rao Chuan,Chen Jingying,Xu Ruyi,et al.A dynamic quantization coding based deep neural network compression method[J].Acta Automatica Sinica,2019,45(10):1960-1968(in Chinese).
- [50] Howard A G,Zhu M L,Chen B,et al.Mobile nets:efficient convolutional neural networks for mobile vision applications[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,USA:IEEE,2017:1-9.
- [51]黄良辉,康祖超,张昌凡,等.基于轻量级卷积神经网络的人脸识别方法[J].湖南工业大学学报,2019,33(2):43-47.Huang Lianghui,Kang Zuchao,Zhang Changfan,et al.Research on face recognition technology based on lightweight convolutional neural networks[J].Journal of Hunan University of Technology,2019,33(2):43-47(in Chinese).
- [52]王健.基于卷积神经网络的电力设备识别方法及系统实现[D].济南:山东大学,2019.
- [53]刘思放,邓春宇,张国宾,等.面向居民智能用电的边缘计算协同架构研究[J].电力建设,2018,39(11):69-77.Liu Sifang,Deng Chunyu,Zhang Guobin,et al.Research on collaborative architecture for edge computing of residential intelligent usage of electricity[J].Electric Power Construction,2018,39(11):69-77(in Chinese).
- [54] Lin B,Zhu F,Zhang J,et al.A time-driven data placement strategy for a scientific workflow combining edge computing and cloud computing[J].IEEE Transactions on Industrial Informatics,2019,7(15):4254-4265.
- [55] Chen J,Li K,Deng Q,et al.Distributed deep learning model for intelligent video surveillance systems with edge computing[J].IEEE Transactions on Industrial Informatics,2019:1-8,DOI:10.1109/TII.2019.2909473.
- [56]李中伟,佟为明,金显吉.智能电网信息安全防御体系与信息安全测试系统构建:乌克兰和以色列国家电网遭受网络攻击事件的思考与启示[J].电力系统自动化,2016,40(8):147-151.Li Zhongwei,Tong Weiming,Jin Xianji.Construction of cyber security defense hierarchy and cyber security testing system of smart grid:thinking and enlightenment for network attack events to national power grid of Ukraine and Israel[J].Automation of Electric Power Systems,2016,40(8):147-151(in Chinese).
- [57] Yu W,Xue Y,Luo J,et al.An UHV grid security and stability defense system:considering the risk of power system communication[J].IEEE Transactions on Smart Grid,2015,7(1):491-500.
- [58]陈武晖,陈文淦,薛安成.面向协同信息攻击的物理电力系统安全风险评估与防御资源分配[J].电网技术,2019,43(7):2353-2360.Chen Wuhui,Chen Wengan,Xue Ancheng.Security risk assessment and defense resource allocation of power system under synergetic cyber attacks[J].Power System Technology,2019,43(7):2353-2360(in Chinese).
- [59]张涛,赵东艳,薛峰,等.电力系统智能终端信息安全防护技术研究框架[J].电力系统自动化,2019,43(19):1-8,67.Zhang Tao,Zhao Dongyan,Xue Feng,et al.Technical research framework of cyber-security protection technologies for power system smart terminals[J].Automation of Electric Power Systems,2019,43(19):1-8,67(in Chinese).
- [60] Liu J N, Weng J, Yang A J, et al. Enabling efficient and privacy-preserving aggregation communication and function query for fog computing based smart grid[J].IEEE Transactions on Smart Grid,2020,11(1):247-257.
- [61] Yuan J,Li X.A reliable and lightweight trust computing mechanism for IoT edge devices based on multi-source feedback information fusion[J].IEEE Access,2018(6):23626-23638.
- [62] Rajaraman,Sundaravaradan N A,Mallikarjuna B,et al.Robust fault analysis in transmission lines using synchrophasor measurements[J].Protection&Control of Modern Power Systems,2018,3(1):14.
- [63]马承志,王宇雷,杨玺,等.用于变电站自主巡视机器人的图像传输系统研究[J].电力系统保护与控制,2014,42(18):105-109.Ma Chengzhi,Wang Yulei,Yang Xi,et al.Research on image transmission system for substation autonomous patrol robot[J].Power System Protection and Control,2014,42(18):105-109(in Chinese).