基于形态学分解的大规模风光并网电力系统多时间尺度灵活性评估Multi-scale Flexibility Evaluation of Large-scale Hybrid Wind and Solar Grid-connected Power System Based on Multi-scale Morphology
詹勋淞;管霖;卓映君;周保荣;文博;卢斯煜;
摘要(Abstract):
大量以风电和光伏为代表的间歇性可再生能源的接入对系统可控电源的灵活运行能力提出了更高的要求,为实现含高比例可再生能源的电力系统可靠性运行,亟需建立一套考虑风光出力特性的系统灵活性定量评估体系。考虑新能源发电的多时间尺度波动特性,提出一种基于形态学分解的电力系统灵活性评估指标及其计算方法。首先通过数学形态学算法分解净负荷曲线,得到多时间尺度分量曲线,并根据不同频段的波动分量得出对应的向上、向下灵活性需求;然后,建立系统内不同类型可控机组在不同波动时间尺度下的灵活性调节能力模型;通过对同一时间尺度下的灵活性资源与需求的匹配分析,计算各时间尺度的向上、向下灵活性不足概率、灵活性不足期望和灵活性裕度期望指标;加权形成系统灵活性评估综合指标。基于南方某电网实际数据进行系统灵活性指标评估,验证所提指标和评估方法的有效性。
关键词(KeyWords): 可再生能源;灵活性;多时间尺度;形态学分解;评估指标
基金项目(Foundation): 国家自然科学基金国际(地区)合作与交流项目(51761145106);; 南方电网公司重点科技项目(CSGTRC-K163007)~~
作者(Author): 詹勋淞;管霖;卓映君;周保荣;文博;卢斯煜;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.0565
参考文献(References):
- [1] Hand M M,Baldwin S,De Meo E,et al.Renewable electricity futures study[R].Colorado:National Renewable Energy Laboratory,2014.
- [2] European Commission.2050 Energy strategy[EB/OL].[2015-10-15].https://ec.europa.eu/energy/en/topics/energy-strategy/2050-energ y-strategy.
- [3]国家发展和改革委员会能源研究所.中国2050高比例可再生能源发展清洁暨路径研究[R].北京:国家发展和改革委员会能源研究所,2015.
- [4] IEA.Empowering variable renewables-options for flexible electricity systems[R].Paris,France:International Energy Agency,2008.
- [5] North American Electric Reliability Corporation.Special report:Accommodating high levels of variable generation[R].American:North American Electric Reliability Corporation,2009.
- [6] Holttinen H,Tuohy A,Milligan M,et al.The flexibility workout:managing variable resources and assessing the need for power system modification[J].IEEE Power and Energy Magazine,2013,11(6):53-62.
- [7]肖定垚,王承民,曾平良,等.电力系统灵活性及其评价综述[J].电网技术,2014,38(6):1569-1576.Xiao Dingyao,Wang Chengmin,Zeng Pingliang,et al. A survey on power system flexibility and its evaluations[J]. Power System Technology,2014,38(6):1569-1576(in Chinese).
- [8]鲁宗相,李海波,乔颖.含高比例可再生能源电力系统灵活性规划及挑战[J].电力系统自动化,2016,40(13):147-158.Lu Zongxiang,Li Haibo,Qiao Ying.Power system flexibility planning and challenge considering high proportion of renewable energy[J].Automation of Electric Power Systems,2016,40(13):147-158(in Chinese).
- [9] Lannoye E,Flynn D,O’Malley M.Evaluation of power system flexibility[J].IEEE Transactions on Power Systems,2012,27(2):922-931.
- [10] Lannoye E, Flynn D, O’Malley M. Transmission, Variable Generation,and power system flexibility[J].IEEE Transactions on Power systems,2015,3(1):57-66.
- [11]鲁宗相,李海波,乔颖.高比例可再生能源并网的电力系统灵活性评价与平衡机理[J].中国电机工程学报,2017,37(1):9-20.Lu Zongxiang,Li Haibo,Qiao Ying.Flexibility evaluation and supply/demand balance principle of power system with highpenetration renewable electricity[J].Proceedings of the CSEE,2017,37(1):9-20(in Chinese).
- [12]李海波,鲁宗相,乔颖,曾平良.大规模风电并网的电力系统运行灵活性评估[J].电网技术,2015,39(6):1672-1678.Li Haibo,Lu Zongxiang,Qiao Ying,Zeng Pingliang.Assessment on operational flexibility of power grid with grid-connected largescale wind farms[J].Power System Technology,2015,39(6):1672-1678(in Chinese).
- [13] Zhao J,Zheng T,Litvinov E.A unified framework for defining and measuring flexibility in power system[J].IEEE Transactions on Power Systems,2015,31(3):1-9.
- [14] Zhang L,Xu J,Yang J,et al.Multiscale morphology analysis and its application to fault diagnosis[J]. Mechanical Systems&Signal Processing,2008,22(3):597-610.
- [15] Energiewende A.Flexibility in the thermal power plants-with a focus on existing coal-fired power plants[R]. Berlin, Germany:Energiewende A,2017.
- [16] Rodriguez A,Laio A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496.
- [17] Isufi E,Loukas A,Simonetto A,et al.Autoregressive moving average graph filtering[J].IEEE Transactions on Signal Processing,2017,65(2):274-288.