离网条件下考虑短时间尺度的水光蓄多能互补发电系统备用容量确定方法Reserve Optimization for Offline Multi-energy Complementary Generation System in Short Time Scale
蒋万枭;刘继春;韩晓言;丁理杰;胡灿;杨芳;彭钰祥;冯麒铭;
摘要(Abstract):
当前光伏等新能源的大规模应用在一定程度上缓解了全球能源短缺和环境污染问题,但新能源本身的间歇性和随机性问题使其无法独立完成供电,常常配置水电机组和抽水蓄能机组补偿光伏,形成水光蓄多能互补发电系统。大部分水光蓄多能互补发电系统修建在远离主电网的偏远地区,经常会出现离线运行的状况,由于无法与主电网完成电能交换,导致新能源渗透率较高的多能互补发电系统供电可靠性不如传统电网,合理配置系统备用容量是保证系统供电可靠性的关键。文章提出了在离网条件下考虑短时间尺度的水光蓄多能互补发电系统备用容量确定方法,建立了基于系统发电容量和备用容量耦合关系的两阶段优化模型。由于系统的备用容量受到系统的发电容量制约,因此,首先考虑系统的发电计划,完成系统小时级的发电容量配置,然后在此基础上进行基于机会约束的系统分钟级的备用容量优化,该机会约束使得离线系统实际运行时在某概率下可靠供电,符合实际电网运行时,允许出现短时间的功率不平衡的情况。仿真结果表明,与传统的系统备用配置原则相比较,合理设置机会约束的置信度可在系统运行成本增加幅度不大的情况下,大大提高水光蓄多能互补系统的供电可靠性。
关键词(KeyWords): 水光蓄多能互补发电系统;离线;两阶段优化;机会约束;备用
基金项目(Foundation): 国家重点研发计划项目“分布式光伏与梯级小水电互补联合发电技术研究及应用示范”(2018YFB0905200)~~
作者(Author): 蒋万枭;刘继春;韩晓言;丁理杰;胡灿;杨芳;彭钰祥;冯麒铭;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.1804
参考文献(References):
- [1]郭子暄,郑赟,钟依庐,等.考虑经济环境约束的多种离网综合能源系统优化配置研究[J].电力需求侧管理,2019,39(1):124-132.Guo Zixuan,Zheng Yun,Zhong Yilu,et al.Research on optimal allocation of off-grid comprehensive energy systems considering economic and environmental constraint[J].Power Demand Side management,2019,39(1):124-132(in Chinese).
- [2]Solanki B V,Raghurajan A,Bhattacharya K,et al.Including smart loads for optimal demand response in integrated energy management systems for isolated microgrids[J].IEEE Transactions on Smart Grid,2017,8(4):1739-1748.
- [3]张耀东.光伏-水电联合运行系统容量配置研究[D].西安:西安理工大学,2016.
- [4]张刘冬,殷明慧,卜京,等.基于成本效益分析的风电抽水蓄能联合运行优化调度模型[J].电网技术,2015,39(12):3386-3392.Zhang Liudong,Yin Minghui,Bu Jing,et al.A joint optimal operation model of wind farms and pumped storage units based on cost-benefit analysis[J].Power System Technology,2015,39(12):3386-3392(in Chinese).
- [5]Bobo D R,Mauzy D M,Trefny F J.Economic generation dispatch with responsive spinning reserve constraints[J].IEEE Transactions on Power Systems,1994,9(1):555-559.
- [6]丁明,齐先军,安玲,等.旋转备用市场中考虑可靠性的多目标分层决策[J].电力系统自动化,2007,31(13):17-22.Ding Ming,Qi Xianjun,An Lin,et al.Multi-objective and layered decision-making in the spinning reserve market considering reliability[J].Automation of Electric Power Systems,2007,31(13):17-22(in Chinese).
- [7]黄大为,韩学山,雷鸣.电力市场中电能与旋转备用的二层优化模型[J].电力系统保护与控制,2011,39(21):110-114.Huang Dawei,Han Xueshan,Lei Ming.Bi-level optimal model of energy and spinning reserve in electricity market[J].Power system Protection and Control,2011,39(21):110-114(in Chinese).
- [8]卢艺,卢苑,梁俊文,等.含抽水蓄能电网安全约束机组组合问题的混合整数线性规划算法[J].电力系统保护与控制,2019,47(3):39-47.Lu Yin,Lu Yuan,Liang Junwen,et al.Mixed integer linear programming algorithm for solving security constrained unit commitment problem of power grid with pumped storage hydro[J].Power system Protection and Control,2019,47(3):39-47(in Chinese).
- [9]张简炼,罗刚,章立宗,等.计及负荷波动及线路可靠性的两阶段风险调度[J].电网技术,2020,44(4):1543-1552.Zhang Jianlian,Luo Gang,Zhang Lizong,et al.Two-stage risk dispatching considering load fluctuation and line reliability[J].Power System Technology,2020,44(4):1543-1552(in Chinese).
- [10]Zheng R,Zhong J.Generation adequacy assessment for power systems with wind turbine and energy storage[C]//IEEE Conference on Innovative Smart Grid Technologies.Gaithersburg,MD,2010:19-21.
- [11]Velarde P,Valverde L,Maestre J M,et al.On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid[J].Journal of Power Sources,2017,343:161-173.
- [12]Wu Z,Gu W,Wang R,et al.Economic optimal schedule of CHPmicrogrid system using chance constrained programming and particle swarm optimization[C]//IEEE Power Energy Soc.Gen.Meeting.2011:1-11.
- [13]Zare M,Niknam T.Azizipanah-Abargho R,et al.New stochastic bi-objective optimal cost and chance of operation management approach for smart microgrid[J].IEEE Transactions on Ind.Informat.,2016,12(6):2031-2040.
- [14]Liu G,Starke M,Xiao B,et al.Microgrid optimal scheduling with chance-constrained islanding capability[J].Elect.Power Syst.Res.2017,145,197-206.
- [15]Ravichandran A,Sirouspour S,Malysz P,et al.A chance constraints-based control strategy for microgrids with energy storage and integrated electric vehicles[J].IEEE Transactions on Smart Grid,2018,9(1):346-359.
- [16]葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自动化,2010,34(6):32-36.Ge Ju,Wang Fei,Zhang Lizi.Spinning reserve model in the wind power integrated power system[J].Automation of Electric Power Systems,2010,34(6):32-36(in Chinese).
- [17]王乐,余志伟,文福拴.基于机会约束规划的最优旋转备用容量确定[J].电网技术,2006,30(20):14-19.Wang Le,Yu Zhiwei,Wen Fushuan.A chance-constraint programming approach to determine requirement of optimal spinning reserve capacity[J].Power System Technology,2006,30(20):14-19(in Chinese).
- [18]汪泳涛,赵健.电力市场环境下含风电电力系统旋转备用优化[J].电网与清洁能源,2017,33(7):123-128.Wang Yongtao,Zhao Jian.Optimal spinning reserve of power system with wind power penetrated under power market environment[J].Power System and Clean Energy,2017,33(7):123-128(in Chinese).
- [19]Liu J,Chen H,Zhang W,et al.Energy management problems under uncertainties for grid-connected microgrids:a chance constrained programming approach[J].IEEE Transactions on Smart Grid,2017,8(6):2585-2596.
- [20]Huo D,Gu C,Ma K,et al.Chance-constrained optimization for multienergy hub systems in a smart city[J].Industrial Electronics IEEE Transactions on,2019,66(2):1402-1412.
- [21]殷自力,陈宇星.基于功率传输转移分布因子的简化电网潮流计算方法[J].电力系统保护与控制,2016,44(17):25-30.Yin Zili,Chen Yuxing.A power flow computation method for reduction grid based on power transfer distribution factor[J].Power System Protection and Control,2016,44(17):25-30(in Chinese).
- [22]Yi W,Ning Z,Chen Q,et al.Dependent discrete convolution based probabilistic load flow for the active distribution system[J].IEEETransactions on Sustainable Energy,2017,8(3):1-1.
- [23]张倩,马愿,李国丽,等.频域分解和深度学习算法在短期负荷及光伏功率预测中的应用[J].中国电机工程学报,2019,39(8):2221-2230+5.Zhang Qian,Ma Yuan,Li Guoli,et al.Application of frequency domain decomposition and deep learning algorithms in short-term load and photovoltaic power forecasting[J].Proceedings of the CSEE,2019,39(8):2221-2230+5(in Chinese).
- [24]王玥,张宇帆,李昭昱,等.即插即用能量组织日前负荷概率预测方法[J].电网技术,2019,43(9):3055-3060.Wang Yue,Zhang Yufan,Li Zhaoyu,et al.Day-ahead probability load forecasting of energy tissues with plug-and-play function[J].Power System Technology,2019,43(9):3055-3060(in Chinese).