考虑充电负荷随机特性的电动汽车充电网络模糊多目标规划Fuzzy Multi-objective Optimization of Electric Vehicle Charging Network With Stochastic Characters of Charging Load
钱科军;谢鹰;张新松;李亚飞;徐杨杨;陆胜男;
摘要(Abstract):
建立了考虑电动汽车充电负荷随机特性的充电网络多目标规划模型,对充电站建设地址和容量进行优化。采用蒙特卡洛法对充电站规划典型日内的充电负荷进行模拟,并在此基础上采用场景概率法进行配电系统概率潮流分析。基于概率潮流分析结果,将规划模型中的配电线路潮流约束与节点电压约束建模为机会约束。此外,模型同时考虑充电服务能力最大与配电系统损耗最低2个不同维度的优化目标,采用模糊数学方法将其转化为基于最大满意度的单目标优化模型,并采用遗传算法求解。基于25节点交通网络和IEEE 33节点配电系统的仿真实验验证了所提模型和方法的有效性。
关键词(KeyWords): 电动汽车;充电网络规划;概率潮流;模糊多目标优化;机会约束
基金项目(Foundation): 国网江苏省电力有限公司科技项目(合同编号:SGJSSZ00KJJS1903295)~~
作者(Author): 钱科军;谢鹰;张新松;李亚飞;徐杨杨;陆胜男;
Email:
DOI: 10.13335/j.1000-3673.pst.2020.0201a
参考文献(References):
- [1]段小宇,胡泽春,崔岩,等.长时间尺度下的电动汽车有序充放电调度[J].电网技术,2018,42(12):4037-4044.Duan Xiaoyu,Hu Zechun,Cui Yan,et al.Optimal charging and discharging strategy for electric vehicles in large timescales[J].Power System Technology,2018,42(12):4037-4044(in Chinese).
- [2]Amany E-Z,Leandro dos S C.Optimal allocation,sizing of PHEVparking lots in distribution system[J].International Journal of Electrical Power and Energy Systems,2015(67):472-477.
- [3]周雪会,王希平.考虑顾客满意度的电动汽车充电桩规划策略[J].可再生能源,2017,35(6):933-939.Zhou Xuehui,Wang Xiping.The strategy of electric vehicle charging piles planning based on the customer satisfactory function[J].Renewable Energy Resources,2017,35(6):933-939(in Chinese).
- [4]Khalkhali K,Abapour S,Abapour M,et al.Application of data envelopment analysis theorem in plug-in hybrid electric vehicle charging station planning[J].IET Generation,Transmission&Distribution,2015,9(7):666-676.
- [5]舒隽,唐刚,韩冰.电动汽车充电站最优规划的两阶段方法[J].电工技术学报,2017,32(3):10-17.Shu Jun,Tang Gang,Han Bing.Two-stage method for optimal planning of electric vehicle charging station[J].Transactions of China Electrotechnical Society,2017,32(3):10-17(in Chinese).
- [6]程宏波,肖永乐,王勋,等.基于引力模型的电动汽车充电站选址规划[J].电工电能新技术,2016,35(5):61-66.Cheng Hongbo,Xiao Yongle,Wang Xun,et al.Site planning of electric vehicles charging station based on gravity model[J].Advanced Technology of Electrical Engineering and Energy,2016,35(5):61-66(in Chinese).
- [7]丁丹军,戴康,张新松,等.基于模糊多目标优化的电动汽车充电网络规划[J].电力系统保护与控制,2018,46(3):43-50.Ding Danjun,Dai Kang,Zhang Xinsong,et al.Network planning for electric vehicle charging based on fuzzy multi-objective optimization[J].Power System Protection and Control,2018,46(3):43-50(in Chinese).
- [8]韩克勤,丁丹军,钱科军,等.基于NSGA-II的电动汽车充电站多目标优化规划[J].电力需求侧管理,2017,19(S1):72-76.Han Keqin,Ding Danjun,Qian Kejun,et al.Multi-objective charging network planning for electric vehicles based on NSGA-II[J].Power Demand Side Management,2017,19(S1):72-76(in Chinese).
- [9]Yao W F,Zhao J H,Wen F S,et al.A multi-objective collaborative planning strategy for integrated power distribution and electric vehicle charging Systems[J].IEEE Transactions on Power Systems,2014,29(4):1811-1821.
- [10]Sun Z H,Zhou X S,Du J,et al.When traffic flow meets power flow:on charging station deployment with budget constraints[J].IEEETransactions on Vehicular Technology,2017,66(4):2915-2926.
- [11]杨冰,王丽芳,廖承林,等.不确定充电习惯对电动汽车充电负荷需求及充电负荷调节的影响[J].电工技术学报,2015,30(4):226-232.Yang Bing,Wang Lifang,Liao Chenglin,et al.Effects of uncertainty charging habits on electric vehicles charging load demand and the charging load regulation[J].Transactions of China Electrotechnical Society,2015,30(4):226-232(in Chinese).
- [12]Andreas V,Lejla H,Uros M,et al.Convex relaxations of chance constrained AC optimal power flow[J].IEEE Transactions on Power Systems,2018,33(3):2829-2841.
- [13]张程飞,刘纯,王跃峰,等.基于模糊多目标优化的电网日前风电接纳能力评估模型[J].电网技术,2015,39(2):426-432.Zhang Chengfei,Liu Chun,Wang Yuefeng,et al.A fuzzy multiobjective optimization based evaluation method of wind power accommodation capability[J].Power System Technology,2015,39(2):426-432(in Chinese).
- [14]Hodgson M J.A flow capturing location-allocation model[J].Geographical Analysis,1990,22(3):270-279.
- [15]王辉,王贵斌,赵俊华,等.考虑交通网络流量的电动汽车充电站规划[J].电力系统自动化,2013,37(13):63-69.Wang Hui,Wang Guibin,Zhao Junhua,et al.Optimal planning for electric vehicle charging stations considering traffic network flows[J].Automation of Electric Power Systems,2013,37(13):63-69(in Chinese).
- [16]US Department for Transport.Transport statistics bulletin-national travel survey:2008[R].Washington:US Department for Transport,2009.
- [17]李俊芳,张步涵.基于进化算法改进拉丁超立方抽样的概率潮流计算[J].中国电机工程学报,2011,31(25):90-96.Li Junfang,Zhang Buhan.Probabilistic load flow based on improved Latin hypercube sampling with evolutionary algorithm[J].Proceedings of the CSEE,2011,31(25):90-96(in Chinese).
- [18]靳康萌,张沛,邓晓洋,等.基于K-means聚类技术改进的多线性蒙特卡洛概率能流算法[J].电网技术,2019,43(1):65-73.Jin Kangmeng,Zhang Pei,Deng Xiaoyang,et al.Improved multi-linear Monte Carlo probabilistic energy flow calculation method based on K-means clustering technique[J].Power System Technology,2019,43(1):65-73(in Chinese).
- [19]黄越辉,曲凯,李驰,等.基于K-means MCMC算法的中长期风电时间序列建模方法研究[J].电网技术,2019,43(7):2469-2476.Huang Yuehui,Qu Kai,Li Chi,et al.Research on modeling method of medium-and long-term wind power time series based on K-means MCMC algorithm[J].Power System Technology,2019,43(7):2469-2476(in Chinese).
- [20]Dharageshwari K,Nayanatara C.Multiobjective optimal placement of multiple distributed generations in IEEE 33 bus radial system using simulated annealing[C]//2015 International Conference on Circuits,Power and Computing Technologies.Nagercoil,India:IEEE,2015:1-7.