改进的TSK型动态模糊神经网络在短期负荷预测中的应用(英文)An Improved TSK-Type Dynamic Fuzzy Neural Network Approach for Short-Term Load Forecasting
杜鹃;
摘要(Abstract):
将改进的TSK型模糊神经网络(fuzzy neural network,FNN)应用于短期负荷预测。该FNN由椭圆基函数构成神经元的中心和宽度参数,并且具有以下特征:网络结构和参数可自动并同时进行调整,不需提前分割输入空间,也不需提前选择网络初始参数;模糊规则在学习过程中可动态增删,不需采用迭代算法即可快速生成。这种模糊规则可动态增删的模糊神经网络(growing and pruning fuzzy neural network,GPFNN)简单有效,可以降低网络的复杂性,加快网络的学习速度。使用EUNITE竞赛数据作测试数据对上述GPFNN方法进行测试,结果表明采用该方法进行短期负荷预测时可获得较高的准确率。
关键词(KeyWords): 动态模糊神经网络;短期负荷预测;椭圆基函数;模糊规则;EUNITE竞赛数据
基金项目(Foundation):
作者(Author): 杜鹃;
Email:
DOI: 10.13335/j.1000-3673.pst.2010.04.007
参考文献(References):
- [1]唐杰明,刘俊勇,杨可,等.基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测[J].电网技术,2009,33(3):63-68.Tang Jieming,Liu Junyong,Yang Ke,et al.Short-term load combination forecasting by grey model and least square support vector machine[J].Power System Technology,2009,33(3):63-68(in Chinese).
- [2]李妮,江岳春,黄珊,等.基于累积式自回归动平均传递函数模型的短期负荷预测[J].电网技术,2009,33(8):93-97.Li Ni,Jiang Yuechun,Huang Shan,et al.Short-term load forecasting based on ARIMA transfer function model[J].Power System Technology,2009,33(8):93-97(in Chinese).
- [3]刘旭,罗滇生,姚建刚,等.基于负荷分解和实时气象因素的短期负荷预测[J].电网技术,2009,33(12):94-100.Liu Xu,Luo Diansheng,Yao Jiangang,et al.Short-term load forecasting based on load decomposition and hourly weather factors[J].Power System Technology,2009,33(12):94-100(in Chinese).
- [4]刘晓军,颜艳,张镝,等.基于量子神经网络的电力系统短期负荷预测[J].电网技术,2009,33(S1):181-184.Liu Xiaojun,Yan Yan,Zhang Di,et al.Forecasting method for short-term load of power system based on quantum neural network[J].Power System Technology,2009,33(S1):181-184(in Chinese).
- [5]黎灿兵,刘梅,单业才,等.基于解耦机制的小地区短期负荷预测方法[J].电网技术,2008,32(5):87-90.Li Canbing,Liu Mei,Shan Yecai,et al.Short-term load forecasting method of small region based on decoupling mechanism[J].Power System Technology,2008,32(5):87-90(in Chinese).
- [6]王德意,杨卓,杨国清.基于负荷混沌特性和最小二乘支持向量机的短期负荷预测[J].电网技术,2008,32(7):66-70.Wang Deyi,Yang Zhuo,Yang Guoqing.Short-term load forecasting based on chaotic characteristic of loads and least squares support vector machines[J].Power System Technology,2008,32(7):66-70(in Chinese).
- [7]陈昊.基于不对称自回归条件异方差模型的短期负荷预测[J].电网技术,2008,32(15):84-89.Chen Hao.Short-term load forecasting based on asymmetric autoregressive conditional heteroscedasticity models[J].Power System Technology,2008,32(15):84-89(in Chinese).
- [8]Vemuri S,Huang W L,Nelson D L.On-line algorithms for forecasting hourly loads of an electrical utility[J].IEEE Trans on Power Apparatus and Systems,1981,100(8):3775-3784.
- [9]Moghram I,Ruhman S.Analysis and evaluation five of load forecasting techniques[J].IEEE Trans on Power Systems,1989,14(4):1484-1491.
- [10]Hagan M T,Behr S M.The time series approach to short term load forecasting[J].IEEE Trans on Power Systems,1987,2(3):832-837.
- [11]Hippert H S,Pedreira C E,Souza R C.Neural networks for short-termload forecasting:a review and evaluation[J].IEEE Trans on Power Systems,2001,6(1):44-55.
- [12]Campbell P R J.A hybrid modelling technique for load forecasting[C].IEEE2007Electrical Power Conference,Montreal,Quebec,Canada,2007.
- [13]Saini L M,Soni M K.Artificial neural network-based peak load forecasting using conjugate gradient methods[J].IEEE Trans on Power Systems,2002,17(3):907-912.
- [14]Mori H,Kobayashi H.Optimal fuzzy inference for short-term load forecasting[J].IEEE Trans on Power Systems,1996,11(1):390-396.
- [15]Meneganti M,Saviello F,Tagliaferri R.Fuzzy neural networks for classification and detection of anomalies[J].IEEE Trans on Neural Networks,1998(9):848-861.
- [16]Papadakis S E,Theocharis J B,Kiartzis S J,et al.A novel approach to short-term load forecasting using fuzzy neural networks[J].IEEE Trans on Power Systems,1998,13(2):480-492.
- [17]Bakirtzis A G,Theocharis J B,Kiartzis S J,et al.Short term load forecasting using fuzzy neural networks[J].IEEE Trans on PowerSystems,1995,10(3):1518-1524.
- [18]Hassibi B,Stork D G.Second-order derivatives for network pruning:optimal brain surgeon[C].Advances in Neural Information Processing,Los Altos,Morgan Kaufman CA,1993.
- [19]Messer K,Kittler J.Choosing an optimal neural network size to aid search through a large image database[C].Proceedings of the British Machine Vision Conference BMVC98,Southampton,United Kingdom,1998.