遗传策略的综合改进及其在负荷建模中的应用Synthetic Improvements of Genetic Strategies and Their Application in Power Load Modeling
李欣然;金群;刘艳阳;林舜江;陈辉华;唐外文;
摘要(Abstract):
研究了遗传操作和控制参数选择对遗传算法性能的影响,设计了解群选择的随机-精英策略、避免近亲繁殖的双断点交叉策略和交叉与变异概率的自适应调整策略,提出了一种综合改进型遗传算法并成功地应用于基于实测参数的负荷建模。算例表明,该算法改善了进化过程中的种群多样性和早熟现象,对加速收敛、缩短辨识时间、克服模型参数分散性、提高辨识精度均有显著作用,适用于负荷建模。
关键词(KeyWords): 电力系统;负荷建模;参数辨识;遗传算法;综合改进
基金项目(Foundation): 高等学校骨干教师资助计划项目(教技司[2002]65号) 湖南省教育厅重点项目(湘教通[2001]197号)
作者(Author): 李欣然;金群;刘艳阳;林舜江;陈辉华;唐外文;
Email:
DOI: 10.13335/j.1000-3673.pst.2006.11.010
参考文献(References):
- [1]张红斌,贺仁睦,刘应梅.基于KOHONEN神经网络的电力系统 负荷动特性聚类与综合[J].中国电机工程学报,2003,23(5):1-5. Zhang Hongbin, He Renmu, Liu Yingmei. The characteristics clustering and synthesis of electric dynamic loads based on KOHONEN neural network[J]. Proceedings of the CSEE, 2003, 23(5): 1-5.
- [2]石景海,贺仁睦.基于量测的负荷建模——分类算法[J].中国电 机工程学报,2004,24(2):78-82. Shi Jinghai, He Renmu. Measurement-based load modeling- sorting algorithm[J]. Proceedings of the CSEE, 2004, 24(2): 78-82.
- [3]石景海,贺仁睦.动态负荷建模中的负荷时变性研究[J].中国电 机工程学报,2004,24(4):85-90. Shi Jinghai, He Renmu. Load time-variation study in dynamic load modeling[J]. Proceedings of the CSEE, 2004, 24(4): 85-90.
- [4]李欣然,林舜江,刘杨华,等.基于实测响应空间的负荷动特性分 类原理与方法[J].中国电机工程学报,2006,26(8):39-44. Li Xinran, Lin Shunjiang, Liu Yanghua, et al. A new classification method for aggregate load dynamic characteristics based on field measured response[J]. Proceedings of the CSEE, 2006, 26(8): 39-44.
- [5] 贺仁睦,王卫国,蒋德斌,等.广东电网动态负荷实测建模及模型 有效性的研究[J].中国电机工程学报,2002,22(9):78-82. He Renmu, Wang Weiguo, Jiang Debin, et al. Measurement-based dynamic load modeling and model validation on Guangdong grid [J]. Proceedings of the CSEE, 2002, 22(9): 78-82.
- [6]史真惠,朱守真,郑竞宏,等.改进BP神经网络在负荷动静比例 确定中的应用[J].中国电机工程学报,2004,24(7):25-29. Shi Zhenhui, Zhu Shouzhen, Zheng Jinghong, et al. The application of improved BP network to determine the proportion of dynamic load[J]. Proceedings of the CSEE, 2004, 24(7): 25-29.
- [7]顾丹珍,艾芊,陈陈,等.适用于快速暂态稳定计算的新型负荷模 型和参数辨识方法[J].中国电机工程学报,2004,24(12):78-85. Gu Danzhen, Ai Qian, Chen Chen, et al. New load models for fast transient stability calculations and parameter identification method [J]. Proceedings of the CSEE, 2004, 24(12): 78-85.
- [8]艾芊,陈陈,沈善德,等.简化前馈网络用于负荷模型参数辨识的 研究[J].中国电机工程学报,2005,25(5):21-27. Ai Qian, Chen Chen, Shen Shande, et al. Research on parameter identification of load models by using linear BP network [J]. Proceedings of the CSEE, 2005, 25(5): 21-27.
- [9] 张进,贺仁睦,王鹏,等.一种新型差分方程负荷模型与电力系统 仿真程序的接口方法[J].电网技术,2005,29(10):57-60. Zhang Jin, He Renmu, Wang Peng, et al. A new method to interface load model in the form of difference equation with power system simulation programs[J]. Power System Technology, 2005, 29(10): 57-60.
- [10]鞠平,赵夏阳,李东辉,等.电力负荷模型可辨识性分析方法[J].电 力系统自动化,1999,23(19):29—33. Ju Ping , Zhao Xiayang, Li Donghui, et al. Approaches to identifiability analysis of electric load models[J]. Automation of Electric Power Systems, 1999, 23(19): 29-33.
- [11]张红斌.电力系统负荷建模模型结构与参数辨识的研究[D].北京: 华北电力大学,2003.
- [12]张红斌,贺仁睦,刘应梅.感应电动机负荷模型参数解析灵敏度分 析及参数辨识策略研究[J].电网技术,2004,28(6):10-14. Zhang Hongbin, He Renmu, Liu Yingmei. Analysis on parameter analytic sensitivity of induction motor model and parameter identification strategy[J]. Power System Technology, 2004, 28(6): 10-14.
- [13]李欣然,刘艳阳,陈辉华,等.遗传算法与传统优化方法应用于电 力负荷建模的比较研究[J].湖南大学学报,2005,32(2):29-32. Li Xinran, Liu Yanyang, Chen Huihua, et al. Comparative study of genetic algorithm and traditional optimization in power load modeling[J]. Journal of Hunan University, 2005, 32(2): 29-32.
- [14] Goldberg D E. Genetic algorithms in search, optimization and machine learning[M]. M A, USA: Addison-Wesley Publishing Company, 1989.
- [15]黄开胜,童怀,郑泰胜,等.遗传算法在异步电动机动态模型参数 识别中的应用[J].中国电机工程学报,2000,20(8):37-41. Huang Kaisheng, Tong Huai, Zheng Taisheng, et al. Parameters estimation for an induction motor's dynamic model using genetic algorithms[J]. Proceedings of the CSEE, 2000, 20(8): 37-41.
- [16]翁俐民,王渺.改进的遗传算法在谐波抑制中的应用[J].电网技 术,2000,24(4):23-26. Weng Limin, Wang Miao. Application of improved genetic algorithm to restrain harmonics in distribution system[J] . Power System Technology, 2000, 24(4): 23-26.
- [17]周双喜,蔡虎.应用于电力系统无功优化的改进遗传算法[J].电 网技术,1997,21(12):1-3. Zhou Shuangxi, Cai Hu. A refined genetic algorithm for reactive power optimization[J]. Power System Technology, 1997, 21(12): 1-3.
- [18]李运灵,侯云鹤,熊信艮,等.遗传算法在电力市场中的应用[J].电 网技术,2000,24(3):55-58. Li Yunling, HouYunhe, Xiong Xinyin, et al. Application of genetic algorithm in electricity market competitive mechanism[J]. Power System Technology, 2000, 24(3): 55-58.
- [19]胡彩娥.应用基于连续潮流算法的遗传算法进行静态电压稳定分析 [J].电网技术,2004,28(15):57-61. Hu Caie. Application of continuous power flow based genetic algorithm to analysis of static voltage stability[J]. Power System Technology, 2004, 28(15): 57-61.
- [20]杜红卫,孙雅明,刘弘靖.基于遗传算法的配电网故障定位和隔离 [J].电网技术,2000,24(5):52—55. Du Hongwei, Sun Yaming, Liu Hongjing. Fault section diagnosis and isolation of distribution networks based on genetic algorithm [J]. Power System Technology, 2000, 24(5): 52-55.
- [21]丁晓群,邓勇,黄伟.基于遗传算法的无功优化在福建电网中的实 用化改进[J].电网技术,2004,28(16):44-47. Ding Xiaoqun, Deng Yong, Huang Wei. Practical improvement of reactive power optimization based on genetic algorithm in Fujian power system[J]. Power System Technology, 2004, 28(16): 44-47.
- [22]张世华,雎刚.一种实数编码的自适应遗传算法及其在热工过程辨 识中的应用研究[J].中国电机工程学报,2004,24(2):210-214. Zhang Shihua, Ju Gang. A real-coded adaptive genetic algorithm and its application research in thermal process identification [J]. Proceedings of the CSEE, 2004, 24(2): 210-214.
- [23] Rudolph G. Convergence analysis of canonical genetic algorithms [J]. IEEE Trans on Neural Networks, 1994, 5(1): 96-101.
- [24]周远晖,陆玉昌,石纯一.基于克服过早收敛的自适应并行遗传算 法[J].清华大学学报(自然科学版),1998,38(3):93-95. Zhou Yuanhui, Lu Yuchang, Shi Chunyi. Adaptive and parallel genetic algorithm based on solving premature convergence[J]. Journal of Tsinghua University(Science & Technology), 1998, 38(3): 93-95.