基于在线序列极限支持向量回归的短期负荷预测模型Short-Term Load Forecasting Model Based on Online Sequential Extreme Support Vector Regression
蒋敏;顾东健;孔军;田易之;
摘要(Abstract):
由于电力市场的发展和智能电网技术的推广,负荷预测变得越来越重要。准确的预测结果有助于提高电力系统运行效率,降低运行成本,减少"电荒"事件的发生。在当前海量高维数据的背景下,有效并准确的在线预测方法是当下的研究重点。针对传统预测方法对新增数据需要重复训练造成的巨大计算消耗和模型利用率低的缺点,提出了一种基于在线序列极限支持向量回归算法(online sequential extreme support vector regression,OS-ESVR)的短期负荷预测模型(short-term load forecasting,STLF)。首先,利用基于随机森林模型的递归特征消除方法(recursive feature elimination based on random forest,RF-RFE)自动选择滞后负荷输入变量;其次,将得出的有效数据信息输入到在线序列支持向量回归模型进行训练学习,训练过程中通过简化粒子群算法(simplified particle swarm optimization,SPSO)对初始模型进行优化,得到训练后的在线序列支持向量回归模型;最后,利用测试数据测试模型。通过在新英格兰ISO(Independent System Operator)数据集进行仿真算例分析,验证了模型能够根据新增数据动态更新。同时预测结果表明了所提模型的时效性和准确性显著优于已有的同类方法。
关键词(KeyWords): 短期负荷预测;递归特征选择方法;在线序列极限支持向量回归模型;简化粒子群算法
基金项目(Foundation): 国家自然科学基金项目(61362030);; 新疆维吾尔自治区科技支疆项目计划(2017E0279)~~
作者(Author): 蒋敏;顾东健;孔军;田易之;
Email:
DOI: 10.13335/j.1000-3673.pst.2017.2400
参考文献(References):
- [1]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向探讨[J].电力系统自动化,2004,28(17):1-11.Kang Chongqing,Xia Qing,Zhang Boming.A survey of power system load forecasting and development[J].Automation of Electric Power Systems,2004,28(17):1-11(in Chinese).
- [2]裴迪.电力系统负荷预测研究与分析[J].中国科技纵横,2014,7(24):160.Pei Di.Research and analysis of power system load forecasting[J].China Science and Technology,2014,7(24):160(in Chinese).
- [3]袁晓辉,王乘,张传勇,等.电力系统短期负荷预测方法的进展[J].电气自动化,2004,26(6):3-6.Yuan Xiaohui,Wang Cheng,Zhang Chuanyong,et al.A survey of short-term load forecasting methods in electric power systems[J].Electrical Automation,2004,26(6):3-6(in Chinese).
- [4]万昆,柳瑞禹.区间时间序列向量自回归模型在短期电力负荷预测中的应用[J].电网技术,2012,36(11):77-81.Wan Kun,Liu Ruiyu.Application of interval time-series vector autoregressive model in short-term load forecasting[J].Power System Technology,2012,36(11):77-81(in Chinese).
- [5]孟安波,胡函武,刘向东.基于纵横交叉算法优化神经网络的负荷预测模型[J].电力系统保护与控制,2016,44(7):102-106.Meng Anbo,Hu Hanwu,Liu Xiangdong.Short-term load forecasting using neural network based on wavelets and crisscross optimization algorithm[J].Power System Protection and Control,2016,44(7):102-106(in Chinese).
- [6]刘文博,傅旭华,王蕾,等.电力负荷无迹卡尔曼阈值多频级WNN区间预估[J].电网技术,2016,40(2):527-533.Liu Wenbo,Fu Xuhua,Wang Lei,et al.WNN interval estimation algorithm for electric load forecasting based on threshold multifrequency unscented Kalman filter[J].Power System Technology,2016,40(2):527-533(in Chinese).
- [7]于海燕,张凤玲.基于模糊神经网络的电力负荷短期预测[J].电网技术,2007,31(3):68-72.Yu Haiyan,Zhang Fengling.Short-term load forecasting based on fuzzy neural network[J].Power System Technology,2007,31(3):68-72(in Chinese).
- [8]李霄,王昕,郑益慧,等.基于改进最小二乘支持向量机和预测误差校正的短期风电负荷预测[J].电力系统保护与控制,2015,43(11):63-69.Li Xiao,Wang Xin,Zheng Yihui,et al.Short-term wind load forecasting based on improved LSSVM and error forecasting correction[J].Power System Protection and Control,2015,43(11):63-69(in Chinese).
- [9]谢敏,邓佳梁,吉祥,等.基于信息熵和变精度粗糙集优化的支持向量机降温负荷预测方法[J].电网技术,2017,41(1):210-214.Xie Min,Deng Jialiang,Ji Xiang,et al.Cooling load forecasting method based on support vector machine optimized with entropy and variable accuracy roughness set[J].Power System Technology,2017,41(1):210-214(in Chinese).
- [10]李冬辉,闫振林,姚乐乐,等.基于改进流形正则化极限学习机的短期负荷预测[J].高电压技术,2016,42(7):2092-2099.Li Donghui,Yan Zhenlin,Yao Lele,et al.Short-term load forecasting based on improved manifold regularization extreme learning machine[J].High Voltage Engineering,2016,42(7):2092-2099(in Chinese).
- [11]Li S,Wang P,Goel L.Short-term load forecasting by wavelet transform and evolutionary extreme learning machine[J].Electric Power Systems Research,2015(122):96-103.
- [12]Liu Q,He Q,Shi Z.Extreme support vector machine classifier[M].Lecture Notes in Computer Science,2008:222-233.
- [13]Zhu W T,Miao J,Qing L Y.Robust regression with extreme support vectors[J].Pattern Recognition Letters,2014,45(45):205-210.
- [14]马天男,牛东晓,黄雅莉,等.基于Spark平台和多变量L2-Boosting回归模型的分布式能源系统短期负荷预测[J].电网技术,2016,40(6):1642-1649.Ma Tiannan,Niu Dongxiao,Huang Yali,et al.Short-term load forecasting for distributed energy system based on spark platform and multi-variable L2-boosting regression model[J].Power System Technology,2016,40(6):1642-1649(in Chinese).
- [15]Duan K B,Rajapakse J C,Wang H,et al.Multiple SVM-RFE for gene selection in cancer classification with expression data[J].IEEE Transactions on Nanobioscience,2005,4(3):228.
- [16]Liang N Y,Huang G B,Saratchandran P,et al.A fast and accurate online sequential learning algorithm for feed forward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423.
- [17]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868.Hu Wang,Li Zhishu.A simpler and more effective particle swarm optimization algorithm[J].Journal of Software,2007,18(4):861-868(in Chinese).
- [18]Brugger D,Rosenstiel W,Bogdan M.Online SVR training by solving the primal optimization problem[J].Journal of Signal Processing Systems,2011,65(3):391-402.