高温固体氧化物电解水制氢储能技术及应用展望Technology and Application Prospect of High-Temperature Solid Oxide Electrolysis Cell
牟树君;林今;邢学韬;周友;
摘要(Abstract):
可再生富余电力的规模消纳是我国能源系统的重大难题,储能系统是缓解弃电问题的一种有效技术手段,然而典型常规储能方式在应对超大容量、长周期储能需求方面存在不足。电解水制氢储能为有效解决储能容量问题带来了曙光。针对目前广泛在研及推广的低温电解水技术效率较低的问题,文章介绍了高温固体氧化物电解电池(solid oxide electrolysis cell,SOEC)电解水制氢技术的基本原理,从物理概念的角度解释了其相对于低温电解技术效率大幅提升的电化学机理。基于所搭建的千瓦级实验测试平台,验证了其较高的电解效率。从材料、建模、优化控制等3方面讨论了高温SOEC制氢储能技术所需解决的关键问题。最后,从分布式能源、化工等领域展望了高温SOEC制氢储能技术的应用前景。
关键词(KeyWords): 可再生能源弃电;大规模储能;电解制氢;高温固体氧化物电解电池
基金项目(Foundation): 国家重点研发计划项目(政府间国际科技创新合作重点专项,2016YFE0102600);; 国家自然科学基金项目(51577096,51477082)~~
作者(Author): 牟树君;林今;邢学韬;周友;
Email:
DOI: 10.13335/j.1000-3673.pst.2017.1689
参考文献(References):
- [1]Barton J P,Infield D G.Energy storage and its use with intermittent renewable energy[J].IEEE Transactions on Energy Conversion,2004,19(2):441-448.
- [2]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.Zhang Wenliang,Qiu Ming,Lai Xiaokang.Application of energy storage technologies in power grids[J].Power System Technology,2008,32(7):1-9(in Chinese).
- [3]Chazarra M,Pérez-Díaz J,García-González J.Optimal energy and reserve scheduling of pumped-storage power plants considering hydraulic short-circuit operation[J].IEEE Transactions on Power Systems,2017,32(1):344-353.
- [4]黄庶,林舜江,刘明波.含风电场和抽水蓄能电站的多目标安全约束动态优化调度[J].中国电机工程学报,2016,36(1):112-121.Huang Shu,Lin Shunjiang,Liu Mingbo.Multi-objective security constrained dynamic optimal dispatch with wind farms and pumped storage stations[J].Proceedings of the CSEE,2016,36(1):112-121(in Chinese).
- [5]徐飞,陈磊,金和平,等.抽水蓄能电站与风电的联合优化运行建模及应用分析[J].电力系统自动化,2013,37(1):149-154.Xu Fei,Chen Lei,Jin Heping,et al.Modeling and application analysis of optimal joint operation of pumped storage power station and wind power[J].Automation of Electric Power Systems,2013,37(1):149-154(in Chinese).
- [6]Garcia-Gonzalez J,Muela M R,Santos L M,et al.Stochastic joint optimization of wind generation and pumped-storage units in an electricity market[J].IEEE Transactions on Power Systems,2008,23(2):460-468.
- [7]李惠玲,张志强,唐晓骏,等.风电和抽水蓄能联合送出时大型风电最优入网规模研究[J],电网技术,2015,39(10):2746-2750.Li Huiling,Zhang Zhiqiang,Tang Xiaojun,et al.Research on optimal capacity of large wind power considering joint operation with pumped hydro storage[J].Power System Technology,2015,39(10):2746-2750(in Chinese).
- [8]肖白,丛晶,高晓峰,等.风电-抽水蓄能联合系统综合效益评价方法[J].电网技术,2014,38(2):400-404.Xiao Bai,Cong Jing,Gao Xiaofeng,et al.A method to evaluate comprehensive benefits of hybrid wind power-pumped storage system[J].Power System Technology,2014,38(2):400-404(in Chinese).
- [9]邹金,赖旭,汪宁渤.以减少电网弃风为目标的风电与抽水蓄能协调运行[J].电网技术,2015,39(9):2472-2477.Zou Jin,Lai Xu,Wang Ningbo.Mitigation of wind curtailment by coordinating with pumped storage[J].Power System Technology,2015,39(9):2472-2477(in Chinese).
- [10]薛小代,梅生伟,林其友,等.面向能源互联网的非补燃压缩空气储能及应用前景初探[J].电网技术,2016,40(1):164-171.Xue Xiaodai,Mei Shengwei,Lin Qiyou,et al.Energy internet oriented non-supplementary fired compressed air energy storage and prospective of application[J].Power System Technology,2016,40(1):164-171(in Chinese).
- [11]梅生伟,薛小代,陈来军.压缩空气储能技术及其应用探讨[J].南方电网技术,2016,10(3):11-15.Mei Shengwei,Xue Xiaodai,Chen Laijun.Discussion on compressed air energy storage technology and its application[J].Southern Power System Technology,2016,10(3):11-15(in Chinese).
- [12]Prospects for large-scale energy storage in decarbonised power grids.international energy agency[R/OL].[2017-07].http://www.iea.org/publications/freepublications/publication/energy_storage.pdf.
- [13]Samir S,Robert H W.Compressed air energy storage:theory,resources and applications for wind power[R].Princeton Environmental Institute Princeton University,2008.
- [14]薛金花,叶季蕾,陶琼,等.采用全寿命周期成本模型的用户侧电池储能经济可行性研究[J].电网技术,2016,40(8):2471-2476.Xue Jinhua,Ye Jilei,Tao Qiong,el al.Economic feasibility of user-side battery energy storage based on whole-life-cycle cost model[J].Power System Technology,2016,40(8):2471-2476(in Chinese).
- [15]陈光堂,邱晓燕,林伟.含钒电池储能的微电网负荷优化分配[J].电网技术,2012,36(5):85-91.Chen Guangtang,Qiu Xiaoyan,Lin Wei.Optimal load distribution of microgrid with energy storage system composed of Vanadium Redox Flow Battery[J].Power System Technology,2012,36(5):85-91(in Chinese).
- [16]Guarnieri M,Mattavelli P,Petrone G,et al.Vanadium Redox Flow Batteries:potentials and challenges of an emerging storage technology[J].IEEE Industrial Electronics Magazine,2016,10(4):20-31.
- [17]Baccino F,Grillo S,Marinelli M,et al.Power and energy control strategies for a Vanadium Redox Flow Battery and wind farm combined system[C]//2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies.Manchester,UK:IEEE,2011:1-8.
- [18]Shibata A,Sato S.Development of vanadium redox flow battery for electricity storage[J].Power Engineering Journal,1999,13(3):130-135.
- [19]张华民,张宇,刘宗浩,等.液流储能电池技术研究进展[J].化学进展,2009,21(11):2333-2340.Zhang Huamin,Zhang Yu,Liu Zonghao,et al.Redox flow battery technology[J].Progress in Chemistry,2009,21(11):2333-2340(in Chinese).
- [20]Albrecht F G,K?nig D H,Dietrich R U.The potential of using power-to-liquid plants for power storage purposes[C]//13th International Conference on the European Energy Market(EEM).Porto,Portugal:IEEE,2016:1-5.
- [21]刘明义,于波,徐景明.固体氧化物电解水制氢系统效率[J].清华大学学报,2009,49(6):868-871.Liu Mingyi,Yu Bo,Xu Jingming.Efficiency of solid oxide water electrolysis system for hydrogen production[J].Journal of Tsinghua University(Sci&Tech),2009,49(6):868-871(in Chinese).
- [22]Lehner M,Tichler R,Steinmuller H,et al.Power-to-Gas:Technology and Business Models[M].Springer,2014.
- [23]Brisse A,Schefold J,Zahid M.High temperature water electrolysis in solid oxide cells[J].Hydrogen Energy,2008,33(22):5375-5382.
- [24]Kazempoor P,Braun R.Model validation and performance analysis of regenerative solid oxide cells:electrolytic operation[J].Hydrogen Energy,2014,39(6):2669-2684.
- [25]Sun-Dong Kim,Ji-Haeng Yu,Doo-Won Seo,et al.Hydrogen production performance of 3-cell flat-tubular solid oxide electrolysis stack[J].Hydrogen Energy,2012,37(1):78-83.
- [26]Sebastian S,Thomas G,Martin R,et al.Power to gas:Technological overview,systems analysis and economic assessment for a case study in Germany[J].Hydrogen Energy,2015,40(12):4285-4294.
- [27]Rashid M M,Mohammed K M,Hamid N,et al.Hydrogen production by water electrolysis:a review of alkaline water electrolysis,PEM water electrolysis and high temperature water electrolysis[J].International Journal of Engineering and Advanced Technology,2015,4(3):80-93.
- [28]Hong H S,Chae U S,Choo S T,et al.Microstructure and electrical conductivity of Ni/YSZ and Ni O/YSZ composites for hightemperature electrolysis prepared by mechanical alloying[J].Journal Power Sources,2005,149(1):84-89.
- [29]Hong H S.The effect of ball milling parameters and Ni concentration on a YSZ-coated Ni composite for a high temperature electrolysis cathode[J].Journal of Alloys&Compounds,2008,449(1):331-334.
- [30]Laguna M A.Recent advances in high temperature electrolysis using solid oxide fuel cells:a review[J].Journal of Power Sources,2012,203(203):4-16.
- [31]Jiang S.P,Chan S.H.A review of anode materials development in solid oxide fuel cells[J].Journal of Materials Science,2004,39(14):4405-4439.
- [32]Martinez F J,Pham A,Aceves S M.A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen[J].Hydrogen Energy,2003,28:483-490.
- [33]Meng Ni,Michael K H,Dennis Y C.Technological development of hydrogen production by solid oxide electrolyzer cell(SOEC)[J].Hydrogen Energy,2008,33(9):2337-2354.
- [34]张文强,于波,陈靖,等.高温固体氧化物电解水制氢技术[J].化学进展,2008,20(5):778-787.Zhang Wenqiang,Yu Bo,Chen Jing,et al.Hydrogen production through solid oxide electrolysis at elevated temperatures[J].Progress in Chemistry,2008,20(5):778-787(in Chinese).
- [35]陈婷,王绍荣.固体氧化物电解池电解水研究综述[J].陶瓷学报.2014,35(1):1-6.Chen Ting,Wang Shaorong.Water electrolysis using SOECs:a review[J].Journal of Ceramics.2014,35(1):1-6(in Chinese).
- [36]Wang W,Huang Y,Jung S,et al.A comparison of LSM,LSF and LSCo for solid oxide electrolyzer anodes[J].Journal of the Electrochemical Society,2006,153(11):2066-2070.
- [37]Hawkes G,O'Brien J,Stoots C,et al.3 D CFD model of a multi-cell high-temperature electrolysis stack[J].International Journal of Hydrogen Energy,2009,34(9):4189-4197.
- [38]Meng N.2D thermal modeling of a solid oxide electrolyzer cell(SOEC)for syngas production by H2O/CO2 co-electrolysis[J].International Journal of Hydrogen Energy,2012,37(8):6389-6399.
- [39]Ni M,Leung M K H,Leung D Y C.An electrochemical model of a solid oxide steam electrolyzer for hydrogen production[J].Chemical Engineering&Technology,2006,29(5):636-642.
- [40]Udagawa J,Aguiar P,Brandon N P.Hydrogen production through steam electrolysis:model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell[J].Journal of Power Sources,2007,166(1):127-136.
- [41]Udagawa,Jun.Hydrogen production through steam electrolysis:model-based evaluation of an intermediate temperature solid oxide electrolysis cell[J].Journal of Power Sources,2008,180(1):46-55.
- [42]Ni M,Leung M K H,Leung D Y C.Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production[J].Electrochimica Acta,2007,52(24):6707-6718.
- [43]Herring J S,O’Brien J E,Stoots C M,et al.Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J].International Journal of Hydrogen Energy,2007,32(4):440-450.
- [44]Cai Q,Adjiman C S,Brandon N P.Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies[J].Journal of Power Sources,2014,268(268):212-224.