电网技术

2020, v.44;No.441(08) 2891-2897

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于数据统计特性考虑误差修正的两阶段光伏功率预测
Two-stage Photovoltaic Power Forecasting and Error Correction Method Based on Statistical Characteristics of Data

刘杰;陈雪梅;陆超;毛航银;

摘要(Abstract):

提高光伏功率预测的准确性有助于电网调度计划的制定,对于电力系统安全稳定和经济运行具有重要意义。基于数据的统计特性分析,提出一种考虑误差修正的两阶段光伏功率预测模型。首先,利用主成分分析(principal component analysis,PCA)克服因气象因素间相关性导致的回归模型共线性问题,通过波动量分析和聚类分析建立了输出功率与气象类型之间更精细的匹配模型;然后采用回归分析的方法构建了各子集对应的多重线性回归模型,实现光伏功率的初步预测;最后根据初步预测误差的分布特性,建立了更为准确的初步预测误差概率分布模型,实现初步预测结果的误差修正。基于实际光伏功率曲线和气象数据的算例结果验证了所提方法的有效性。

关键词(KeyWords): 光伏功率预测;主成分分析;聚类分析;多重线性回归;误差修正

Abstract:

Keywords:

基金项目(Foundation): 国家电网公司总部科技项目(52110419003R)~~

作者(Author): 刘杰;陈雪梅;陆超;毛航银;

Email:

DOI: 10.13335/j.1000-3673.pst.2020.0027a

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享