脉冲电压作用下晶闸管反向恢复期损伤效应与机理分析Damage Effect and Mechanism Analysis of Thyristor Induced by Pulse Voltage in Reverse Recovery Period
岳珂;庞磊;陈炫宇;叶明天;张乔根;陶风波;
摘要(Abstract):
掌握晶闸管反向恢复期损伤机理对晶闸管保护设计和探索反向恢复过程相关机理具有重要意义。为研究高压晶闸管在反向恢复期内脉冲作用下的损伤机理,分别采用脉冲试验法、软件仿真法以及芯片失效分析法,对晶闸管进行了反向恢复期内脉冲损伤试验,建立晶闸管器件–电路模型,对反向恢复期内脉冲作用过程进行数值模拟,并通过芯片失效现象分析其失效机理。结果表明,正常门极触发导通和反向恢复期内二次导通均在晶闸管靠近门极处的阴极边缘形成初始导通通道,并通过载流子的扩散拓宽通道,其中后者的电流密度较大,且由于反向恢复期最后关闭区域存在残留的载流子,在这个区域能够形成替代通道;反向恢复期内由于晶闸管门极区域电流密度过大、电流上升率过高,门极附近一带容易烧毁,表明晶闸管反向恢复期脉冲损伤属于热致损伤。
关键词(KeyWords): 晶闸管;暂态特性;反向恢复;冲击电压;损伤机理
基金项目(Foundation): 国家电网公司科技项目(SGJSDK00KJJS1800292)~~
作者(Author): 岳珂;庞磊;陈炫宇;叶明天;张乔根;陶风波;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.1109
参考文献(References):
- [1]刘国友,黄建伟,舒丽辉,等.6英寸高压晶闸管的研制[J].电网技术,2007,31(2):90-92.Liu Guoyou,Huang Jianwei,ShuLihui,et al.Development of high voltage thyristors with 6 inches[J].Power System Technology,2007,32(2):90-92(in Chinese).
- [2]饶宏,张东辉,赵晓斌,等.特高压直流输电的实践和分析[J].高电压技术,2015,41(8):2481-2488.Rao Hong,Zhang Donghui,Zhao Xiaobin,et al.Practice and analyses of UHVDC power transmission[J].High Voltage Engineering,2015,41(8):2481-2488(in Chinese).
- [3]赵婉君.高压直流输电工程技术[M].北京:中国电力出版社,2004:10-16.
- [4]安婷,王伟男.中欧高压直流电网技术论坛综述[J].电网技术,2017,41(8):2407-2416.An Ting,Wang Weinan.Overview of sino-european HVDC grid technical forum[J].Power System Technology,2017,41(8):2407-2416(in Chinese).
- [5]Yue K,Pang L,Zhang QG,et al.Reverse recovery characteristics of high power thyristors in HVDC converter valve[J].IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(4):2132-2140.
- [6]Li X,Sintra L,Dhaliwal N.Nelson river pole 1 thyristor leakage problem[J].IEEE Transactions on Power Delivery,2017,PP(99):1-10.
- [7]Bennett MG,Dhaliwal NS,Leirbukt A.A survey of the reliability of HVDC systems throughout the world during 2011-2012[R].CIGRE2014 Session,Paris,France,2014.
- [8]周启文,丁峰峰,潘磊,等.晶闸管旁路开关在UPFC中的应用[J].电力工程技术,2019,38(1):146-151.Zhou Qiwen,DingFengfeng,Pan Lei,et al.The application of thyristor bypass witch in UPFC[J].Electric Power Engineering Technology,2019,38(1):146-151(in Chinese).
- [9]许韦华,陈争光,汤广福,等.换流阀设备换相失败故障的暂态分析[J].电网技术,2003,37(6):1759-1763.XuWeihua,Chen Zhengguang,Tang Guangfu,et al.Analysis on transient commutation failure fault on converter valve[J].PowerSystemTechnology,2003,37(6):1759-1763(in Chinese).
- [10]蔡文瑞,杨国生,杜丁香,等.考虑多因素影响的换相失败预测与识别方法[J].电网技术,2019,43(10):3477-3487.CaiWenrui,Yang Guosheng,Du Dingxiang,et al.Prediction and identification method for commutation failure considering multi-factor influence[J].PowerSystemTechnology,2019,43(10):3477-3487(in Chinese).
- [11]汤奕,郑晨一.高压直流输电系统换相失败影响因素研究综述[J].中国电机工程学报,2019,39(2):499-513.Tang Yi,ZhengChenyi.Review on influencing factors of commutation failure in HVDC systems[J].Proceeding of the CSEE,2019,39(2):499-513(in Chinese).
- [12]直流输电技术研究所.HVDC换流阀关键零部件失效表征参数提取与分析技术研究报告[R].北京:全球能源互联网研究院,2017.
- [13]王华锋,林志光,张海峰,等.±800kV特高压直流工程换流阀故障分析与优化设计方法[J].高电压技术,2017,43(1):67-73.Wang Huafeng,Lin Zhiguang,Zhang Haifeng,et al.Fault analysis of±800 kV UHVDC transmission converter valve and optimal design method[J].High Voltage Engineering,2019,43(1):67-73(in Chinese).
- [14]苟锐锋,马振军.高压晶闸管换流阀电控型和光控型晶闸管反向恢复期的不同保护策略[J].高电压技术,2016,42(12):3982-3988.Gou Ruifeng,Ma Zhenjun.Different protection tactics for electric triggered thyristor and light triggered thyristor valve about reverse recovery period[J].High Voltage Engineering,2019,42(12):3982-3988(in Chinese).
- [15]任小静,王潇,刘飞超,等.两种特高压直流输电用晶闸管控制单元工作原理分析对比[J].高压电器,2015,51(7):74-77.RenXiaojing,Wang Xiao,Liu Feichao,et al.Comparative analysis on operating principles of the two thyristor control unit in UHVDCtransmission[J].High Voltage Apparatus,2015,51(7):74-77(in Chinese).
- [16]吴晋波,熊尚峰,陈刚,等.HVDC开路状态下换流阀控制设备误发保护性触发故障原因分析[J].电网技术,2018,42(3):812-818.Wu Jinbo,XiongShangfeng,Chen Gang,et al.Cause analysis of sent-in-error valve control protective trigger on open HVDC line[J].PowerSystemTechnology,2018,42(3):812-818(in Chinese).
- [17]罗毅飞,肖飞,唐勇,等.续流二极管续流瞬态反向恢复电压尖峰机理研究[J].物理学报,2014,63(21):217201.LuoYifei,XiaoFei,TangYong,et al.Investigation into the reverse recovery voltage peak mechanism of freewheeling diode at a switching transition[J].Acta PhysSin,2014,63(21):217201(in Chinese).
- [18]Luo Y,Xiao F,Wang B,et al.A voltage model of p-i-n diodes at reverse recovery under short-time freewheeling[J].IEEE Transactions on Power Electronics,2017,32(1):142-149.
- [19]Kao YC.The design of high voltage high power silicon junction rectifiers[J].IEEE Transactions on Electron Devices,1970,17(9):657-660.
- [20]Selberherr D I S.Analysis and simulation of semiconductor devices[M].Springer Verlag Wien,1984.
- [21]刘隆晨,岳珂,庞磊,等.高压直流输电换流阀晶闸管级单元综合测试系统设计与实现[J].电网技术,2016,40(3):756-761.LiuLongchen,YueKe,Pang Lei,et al.Design and implementation of synthetic test system for thyristor level of HVDC converter valve[J].Power System Technology,2016,40(3):756-761(in Chinese).
- [22]Sampei M,Yamada T,Tanabe S,et al.Secular change in characteristics of thyristors used in HVDC valve[J].IEEETransactions on Power Delivery,2002,12(3):1159-1167.
- [23]Wunsch DC,Bell RR.Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages[J].IEEETransactions on Nuclear Science,1968,15(6):244-259.
- [24]Ikeda S,Araki T.The di/dt capability of thyristors[J].Proceedings of the IEEE,1967,55(8):1301-1305.
- [25]Taylor P D.晶闸管的设计与制造[M].庞银锁译.北京:中国铁道出版社,1992.