基于波动过程匹配技术的短期风电功率预测Short-Term Wind Power Forecasting Based on Fluctuation Process Matching Technology
丁明;缪乐颖;车建峰;毕锐;张超;王勃;
摘要(Abstract):
提出了一种基于波动过程匹配技术的风电功率短期预测的方案。利用希尔伯特-黄变换对风电功率波动进行频谱分析,将各个固有模态分量重构成随机性强的高频分量和反映波动趋势的低频分量,并确定了分频预测方案。对低频分量进行波动过程识别并建立特征参数库,利用各类风速波动过程与风电功率波动过程的匹配关系进行预测和修正;对高频分量利用多年历史数据进行BP神经网络预测,并与低频分量预测结果叠加。综合预测结果的均方根误差在13%左右,较传统方法有显著改善。
关键词(KeyWords): 风电功率预测;希尔伯特-黄变换;波动过程;分频预测;匹配技术
基金项目(Foundation): 国家电网公司科技项目“基于广域时空大数据分析的风电功率预测方法研究与应用”;; 可再生能源与工业节能安徽省工程实验室开放课题资助(45000-411104/012)~~
作者(Author): 丁明;缪乐颖;车建峰;毕锐;张超;王勃;
Email:
DOI: 10.13335/j.1000-3673.pst.2018.0456
参考文献(References):
- [1]刘纯,王跃峰,黄越辉.风电并网技术现状及发展趋势[J].供用电,2013,30(4):1-8.Liu Chun,Wang Yuefeng,Huang Yuehui.Current situation and development trend of wind power integration technology[J].Distribution&Utilization,2013,30(4):1-8(in Chinese).
- [2]Giebel G,Landberg G,Kariniotakis G.State-of-the-art on methods and software tools for short-term,prediction of wind energy production[C]//European Wind Energy Conference&Exhibition.Madrid,Spain:IEEE,2003:40-47.
- [3]钱政,裴岩,曹利宵,等.风电功率预测方法综述[J].高电压技术,2016,42(4):1047-1060.Qian Zheng,Pei Yan,Cao Lixiao,et al.Review of wind power forecasting method[J].High Voltage Engineering,2016,42(4):1047-1060(in Chinese).
- [4]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generated power forecasting in wind farm[J].Proceedings of the CSEE,2005,25(11):1-5(in Chinese).
- [5]孙春顺,王耀南,李欣然.小时风速的向量自回归模型及应用[J].中国电机工程学报,2008,28(14):112-117.Sun Chunshun,Wang Yaonan,Li Xinran.A vector autoregression model of hourly wind speed and its applications in hourly wind speed forecasting[J].Proceedings of the CSEE,2008,28(14):112-117(in Chinese).
- [6]范高锋,王伟胜,刘纯.基于人工神经网络的风电功率短期预测系统[J].电网技术,2008,32(22):72-76.Fan Gaofeng,Wang Weisheng,Liu Chun.Artificial neural network based wind power short term prediction system[J].Power System Technology,2008,32(22):72-76(in Chinese).
- [7]林卫星,文劲宇,艾小猛,等.风电功率波动特性的概率分布研究[J].中国电机工程学报,2012,32(1):38-46,20.Lin Weixing,Wen Jinyu,Ai Xiaomeng,et al.Probability density function of wind power variations[J].Proceedings of the CSEE,2012,32(1):38-46,20(in Chinese).
- [8]杨茂,董骏城.基于混合分布模型的风电功率波动特性研究[J].中国电机工程学报,2016,36(S1):69-78.Yang Mao,Dong Juncheng.Study on characteristics of wind power fluctuation based on mixed distribution model[J].Proceedings of the CSEE,2016,36(S1):69-78(in Chinese).
- [9]杨茂,齐玥.基于相空间重构的风电功率波动特性分析及其对预测误差影响[J].中国电机工程学报,2015,35(24):6304-6314.Yang Mao,Qi Yue.Volatility of wind power sequence and its influence on prediction error based on phase space reconstruction[J].Proceedings of the CSEE,2015,35(24):6304-6314(in Chinese).
- [10]周统汉,陈峦,李坚.基于有限混合Laplace模型的风功率波动特性研究[J].电网技术,2017,41(2):543-550.Zhou Tonghan,Chen Luan,Li Jian.Artificial neural network based wind power short term prediction system[J].Power System Technology,2017,41(2):543-550(in Chinese).
- [11]杨树德,同向前,张皓.风力发电系统功率波动传递特性的研究[J].电源学报,2014,12(6):31-35.Yang Shude,Tong Xiangqian,Zhang Hao.Research on the transfer characteristics of power fluctuation in wind power generation system[J].Journal of Power Supply,2014,12(6):31-35(in Chinese).
- [12]李驰,刘纯,黄越辉,等.基于波动特性的风电出力时间序列建模方法研究[J].电网技术,2015,39(1):208-214.Li Chi,Liu Chun,Huang Yuehui,et al.Study on the modeling method of wind power time series based on fluctuation characteristics[J].Power System Technology,2015,39(1):208-214(in Chinese).
- [13]陈一贤.HHT方法分析[D].杭州:浙江大学,2007.
- [14]李琳.HHT时频分析方法的研究与应用[D].长春:吉林大学,2006.
- [15]Miao F,Tang X,Qi Z.Fluctuation feature extraction of wind power[C]//Innovative Smart Grid Technologies-Asia.Tianjin,China:IEEE,2012:1-5
- [16]刘志刚.Hilbert-Huang变换及其在电力系统中的应用[M].北京:科学出版社,2016:108-127.
- [17]孙婉璐.计及风电并网的短期负荷EEMD与神经网络预测方法[D].成都:西南交通大学,2013.
- [18]王铮,王伟胜,刘纯,等.基于风过程方法的风电功率预测结果不确定性估计[J].电网技术,2013,37(1):242-247.Wang Zheng,Wang Weisheng,Liu Chun,et al.Uncertainty estimation of wind power prediction result based on wind process method[J].Power System Technology,2013,37(1):242-247(in Chinese).
- [19]Wang Shenghui,Liu Xiaonan,Jin Yuexin,et al.Wind power short term forecasting based on back propagation neural network[J].International Journal of Smart Home,2015,9(7):231-240.