考虑地理因素的改进量子粒子群算法在多目标电网规划中的应用Application of Improved Quantum Particle Swarm Optimization in Power Network Planning Considering Geography Factor
曹承栋;常鲜戎;刘艳;
摘要(Abstract):
针对电网规划的多目标权衡优化问题,建立以可靠性和经济性为目标的电网规划模型,提出改进的量子粒子群算法,采用Pareto支配关系来更新粒子的个体和局部最优值,定义粒子紊流极大极小间距,并采用紊流间距方法裁剪非支配解,引入收敛因子K加快粒子跳出局部最优后的收敛速度。同时考虑电网规划存在的地理环境不确定因素的影响,在规划目标函数中引入地理障碍罚因子。通过18节点电网规划算例仿真结果表明,提出的改进算法与基于非支配遗传算法和基于多目标进化算法相比,所得的Pareto解数目,解的优劣情况以及分布效果都有明显提升。
关键词(KeyWords): 多目标优化;量子粒子群算法;电网规划
基金项目(Foundation): 国家自然科学基金项目(51077052/E0704)~~
作者(Author): 曹承栋;常鲜戎;刘艳;
Email:
DOI: 10.13335/j.1000-3673.pst.2012.03.027
参考文献(References):
- [1]Schaffer J D.Genetic algorithms and their applications[C]//Proceedings of the First Int Conf on GeneticAlgorithms.Pittsburgh,America:IEEE,1985:93-100.
- [2]Kalyanmoy D,Pratap A,Meyarivan T.A fast and elitistmultiobjective genetic algorithm:NSGA-II[J].IEEE Transactions onEvolutionary Computation,2002,6(2):182-197.
- [3]Grover L.A fast quantum mechanical algorithm for databasesearch[C]//28th Annual ACM Symposium on Theory ofComputing.New York,America:IEEE,1996:212-219.
- [4]李然,盛四清,王莹.基于改进粒子群算法的电压薄弱区域恢复[J].电力系统保护与控制,2009,37(24):109-113.Li Ran,Sheng Siqing,Wang Ying.Weak voltage areas recovery basedon improved particle swarm optimization algorithm[J].Power SystemProtection and Control,2009,37(24):109-113(in Chinese).
- [5]王锡凡.电力系统优化规划[M].北京:水利电力出版社,1990:286-293.
- [6]王秀丽,李淑慧,陈皓勇,等.基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J].中国电机工程学报,2006,26(12):11-15.Wang Xiuli,Li Shuhui,Chen Haoyong,et al.Multi-objective andmulti-district transmission planning based on NSGA-II andcooperative co-evolutionary algorithm[J].Proceedings of the CSEE,2006,26(12):11-15(in Chinese).
- [7]徐敏杰,吴俊勇,胡兆光,等.电力市场环境下基于多智能体的多目标电网规划方法[J].电力自动化设备,2008,28(1):33-37.Xu Minjie,Wu Junyong,Hu Zhaoguang,et al.Multi-agent basedmulti-objective network planning in power market environment[J].Electric Power Automation Equipment,2008,28(1):33-37(inChinese).
- [8]袁晓辉,王乘,张勇传,等.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19.Yuan Xiaohui,Wang Cheng,Zhang Yongchuan,et al.A survey onapplication of particle swarm optimization to electric powersystems[J].Power System Technology,2004,28(19):14-19(inChinese).
- [9]刘红文,张葛祥.基于改进量子遗传算法的电力系统无功优化[J].电网技术,2008,32(10):35-50.Liu Hongwen,Zhang Gexiang.A reactive power optimization methodbased on improved quantum-inspired genetic algorithm[J].PowerSystem Technology,2008,32(10):35-50(in Chinese).
- [10]林川,冯全源.一种新的自适应粒子群优化算法[J].计算机工程,2008,34(7):181-183.Lin Chuan,Feng Quanyuan.New adaptive particle swarmoptimization algorithm[J].Computer Engineering,2008,34(7):181-183(in Chinese).
- [11]冯士刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J].电工技术学报,2007,22(12):146-151.Feng Shigang,Ai Qian.Application of fast and elitist non-dominatedsorting generic algorithm in multi-objective reactive poweroptimization[J].Transactions of China Electronically Society,2007,22(12):146-151(in Chinese).
- [12]娄素华,李研,吴耀武,等.多目标电网无功优化的量子遗传算法[J].高电压技术,2005,31(9):69-83.Lou Suhua,Li Yan,Wu Yaowu,et al.Multi-objective reactive poweroptimization using quantum genetic algorithm[J].High VoltageEngineering,2005,31(9):69-83(in Chinese).
- [13]符杨,孟令合,胡荣,等.改进多目标蚁群算法在电网规划中的应用[J].电网技术,2009,33(18):57-62.Fu Yang,Meng Linghe,Hu Rong,et al.Application of improvedmulti-objective ant colony algorithm in power network planning[J].Power System Technology,2009,33(18):57-62(in Chinese).
- [14]曹世光,柳焯,于尔铿.缺电成本与可靠性规划的研究[J].电网技术,1997,21(9):52-54.Cao Shiguang,Liu Zhuo,Yu Erkeng.The research of lost load valueand reliability planning[J].Power System Technology,1997,21(9):52-54(in Chinese).
- [15]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007:87-92.
- [16]胡国强,贺仁睦.基于交互式多目标决策方法的水火电力系统日有功负荷优化分配[J].电网技术,2009,33(18):37-42.Hu Guoqiang,He Renmu.Optimal daily active power loaddispatching of hydrothermal power system based on interactivemulti-objective decision-making method[J].Power SystemTechnology,2009,33(18):37-42(in Chinese).