非参数条件概率预测提高风电消纳的优化方法Optimal Method of Improving Wind Power Accommodation by Nonparametric Conditional Probabilistic Forecasting
叶一达;魏林君;乔颖;李琰;鲁宗相;
摘要(Abstract):
功率点值预测信息未充分考虑可再生能源的不确定性及波动性,在日前发电计划和备用决策安排中存在保守或冒进的风险。引入非参数化方法,根据历史风资源状况得到风电出力的非参数条件概率预测结果,建立风电日前消纳调度模型。该模型在不同资源主导因素所划分的条件空间子集中得到预测功率条件概率分布,能够反映弃风和失负荷风险,可以根据调度需求选取不同的预测功率置信区间,计及风电不确定性完整的条件概率信息。仿真算例验证了选取合适置信水平的风电非参数化条件概率预测方法在日前优化运行中有效提高风电消纳水平,并降低系统运行风险。
关键词(KeyWords): 风电日前消纳;非参数化;条件概率预测;系统运行风险
基金项目(Foundation): 国家重点研发计划支持项目(2016YFB0900105);; 国家电网公司科技项目(XTB17201500037)~~
作者(Author): 叶一达;魏林君;乔颖;李琰;鲁宗相;
Email:
DOI: 10.13335/j.1000-3673.pst.2016.3054
参考文献(References):
- [1]国家能源局.2016年风电并网运行情况[EB/OL].[2017-01-26].http://www.nea.gov.cn/2017-01/26/c_136014615.htm.
- [2]崔强,王秀丽,王维洲.考虑风电消纳能力的高载能用户错峰峰谷电价研究[J].电网技术,2015,39(4):946-952.Cui Qiang,Wang Xiuli,Wang Weizhou.Stagger peak electricity price for heavy energy-consuming enterprises considering improvement of wind power accommodation[J].Power System Technology,2015,39(4):946-952(in Chinese).
- [3]刘德伟,黄越辉,王伟胜,等.考虑调峰和电网输送约束的省级系统风电消纳能力分析[J].电力系统自动化,2011,35(22):77-81.Liu Dewei,Huang Yuehui,Wang Weisheng,et al.Analysis on provincial system available capability of accommodating wind power considering peak load dispatch and transmission constraints[J].Automation of Electric Power Systems,2011,35(22):77-81(in Chinese).
- [4]牛东晓,李建锋,魏林君,等.跨区电网中风电消纳影响因素分析及综合评估方法研究[J].电网技术,2016,40(4):1087-1093.Niu Dongxiao,Li Jianfeng,Wei Linjun,et al.Study on technical factors analysis and overall evaluation method regarding wind power integration in trans-provincial power grid[J].Power System Technology,2016,40(4):1087-1093(in Chinese).
- [5]鲁宗相,徐曼,乔颖,等.风电功率预测的新型互联网运营模式设计[J].电网技术,2016,40(1):125-131.Lu Zongxiang,Xu Man,Qiao Ying,et al.New internet based operation pattern design of wind power forecasting system[J].Power System Technology,2016,40(1):125-131(in Chinese).
- [6]鞠立伟,秦超,吴鸿亮,等.计及多类型需求响应的风电消纳随机优化调度模型[J].电网技术,2015,39(7):1839-1846.Ju Liwei,Qin Chao,Wu Hongliang,et al.Wind power accommodation stochastic optimization model with multi-type demand response[J].Power System Technology,2015,39(7):1839-1846(in Chinese).
- [7]刘文颖,文晶,谢昶,等.考虑风电消纳的电力系统源荷协调多目标优化方法[J].中国电机工程学报,2015,35(5):1079-1088.Liu Wenying,Wen Jing,Xie Chang,et al.Multi-objective optimal method considering wind power accommodation based on source-load coordination[J].Proceedings of the CSEE,2015,35(5):1079-1088(in Chinese).
- [8]陈磊,徐飞,王晓,等.储热提升风电消纳能力的实施方式及效果分析[J].中国电机工程学报,2015,35(17):4283-4290.Chen Lei,Xu Fei,Wang Xiao,et al.Implementation and effect of thermal storage in improving wind power accommodation[J].Proceedings of the CSEE,2015,35(17):4283-4290(in Chinese)
- [9]曾丹,姚建国,杨胜春,等.应对风电消纳中基于安全约束的价格型需求响应优化调度建模[J].中国电机工程学报,2014,34(31):5571-5578.Zeng Dan,Yao Jianguo,Yang Shengchun,et al.Optimization dispatch modeling for price-based demand response considering security constraints to accommodate the wind power[J].Proceedings of the CSEE,2014,34(31):5571-5578(in Chinese).
- [10]吴雄,王秀丽,李骏,等.考虑风电外送的省级系统调峰分析模型[J].电网技术,2013,37(6):1578-1583.Wu Xiong,Wang Xiuli,Li Jun,et al.A model to analyze peak load regulation of provincial power system considering sending-out of wind power[J].Power System Technology,2013,37(6):1578-1583(in Chinese).
- [11]Yang M,Fan S,Lee W J.Probabilistic short-term wind power forecast using componential sparse Bayesian learning[J].IEEE Transactions on Industry Applications,2013,49(6):2783-2792.
- [12]贾文昭,康重庆,李丹,等.基于日前风功率预测的风电消纳能力评估方法[J].电网技术,2012,36(8):69-75.Jia Wenzhao,Kang Chongqing,Li Dan,et al.Evaluation on capability of wind power accommodation based on its day-ahead forecasting[J].Power System Technology,2012,36(8):69-75(in Chinese).
- [13]田建芳,毛亚珊,翟桥柱,等.基于风电消纳能力评估的安全约束经济调度方法[J].电网技术,2015,39(9):2398-2403.Tian Jianfang,Mao Yashan,Zhai Qiaozhu,et a1.Security constrained unit commitment with wind power based on evaluation of wind power penetration capacity[J].Power System Technology,2015,39(9):2398-2403(in Chinese).
- [14]刘小聪,王蓓蓓,李扬,等.基于实时电价的大规模风电消纳机组组合和经济调度模型[J].电网技术,2014,38(11):2955-2963.Liu Xiaocong,Wang Beibei,Li Yang,et al.Unit commitment model and economic dispatch model based on real time pricing for large-scale wind power accommodation[J].Power System Technology,2014,38(11):2955-2963(in Chinese).
- [15]Zhang Y,Wang J,Wang X.Review on probabilistic forecasting of wind power generation[J].Renewable and Sustainable Energy Reviews,2014(32):255-270.
- [16]Pinson P,Kariniotakis G.Conditional prediction intervals of wind power generation[J].IEEE Transactions on Power Systems,2010,25(4):1845-1856.
- [17]Zhang N,Kang C,Xia Q,et al.A convex model of risk-based unit commitment for day-ahead market clearing considering wind power uncertainty[J].IEEE Transactions on Power Systems,2015,30(3):1582-1592.
- [18]Carrión M,Arroyo J M.A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J].IEEE Transactions on Power Systems,2006,21(3):1371-1378.
- [19]Yuan X,Ji B,Zhang S,et al.An improved artificial physical optimization algorithm for dynamic dispatch of generators with valve-point effects and wind power[J].Energy Conversion and Management,2014(82):92-105.
- [20]王秀丽,张新松,许小川.单边电力市场中价格调控机制及其模拟[J].电力系统自动化,2005,29(21):10-14.Wang Xiuli,Zhang Xinsong,Xu Xiaochuan.Research on mechanism of price adjusting and simulation in unilateral electricity market[J].Automation of Electric Power Systems,2005,29(21):10-14(in Chinese).
- [21]Khosravi A,Nahavandi S,Creighton D.Prediction intervals for short-term wind farm power generation forecasts[J].IEEE Transactions on Sustainable Energy,2013,4(3):602-610.