电网技术

2020, v.44;No.434(01) 27-37

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于深度序列翻译模型的非侵入式负荷分解方法
Non-intrusive Load Decomposition Method Based on Deep Sequence Translation Model

任文龙;许刚;

摘要(Abstract):

智能用电的一个重要环节是能量监测,其关键技术是非侵入式负荷分解,为了提高居民负荷分解的准确性,将序列翻译模型应用到非侵入式负荷分解之中。首先确定电器在不同模式的运行功率,同时将电器的运行模式进行组合编码,将所有电器的运行状态用一个状态码进行表示。其次,考虑电器运行过程中的时间关联关系,结合序列翻译模型理论,将待分解的信号与电器的状态码在序列翻译模型上进行映射训练,同时运用Dropout技术和稀疏化技术对模型进行优化以确定较优的网络参数。构建的序列翻译模型综合应用了电器运行模式的时间尺度信息与信号幅值特性,将待分解的能量翻译为状态码,从而实现负荷能量的分解。最后,利用公开数据集进行验证,结果表明所提方法有较高的能量分解准确率。

关键词(KeyWords): 非侵入式负荷分解;组合编码;序列翻译模型;居民负荷;深度学习

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力公司科技项目(5211HZ17000D)~~

作者(Author): 任文龙;许刚;

Email:

DOI:

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享