变压器拓扑修正暂态模型及其在直流偏磁耐受评估中的应用Topology-correct Duality-based Transformer Transient Model and Its Application in DC Bias Assessment
李金龙;李金忠;张书琦;
摘要(Abstract):
近年来,随着特高压线路建设及投运数目的增加高压直流输电系统引起的直流偏磁日趋严重,非常有必要对变压器进行直流偏磁耐受评估。而直流偏磁工况下变压器激磁电流计算是直流偏磁耐受评估的重要研究内容。因此,根据变压器的铁心结构、绕组布置、逆磁滞回模型利用磁路-电路对偶原理提出一种综合考虑其结构特征与铁心材料的非线性磁化特性的拓扑修正暂态模型用于变压器直流偏磁激磁电流的计算。数值计算结果与试验测量数据具有良好的一致性,验证了所提模型的有效性。分析解释了不同材料、铁心接缝气隙厚度和漏感参数对计算结果的影响。经验证,变压器铁心材料对直流偏磁激磁电流的影响较小,气隙厚度和漏感参数是影响计算结果的重要参数,需根据试验结果对初始估计值进行必要修正。所得结论可为变压器拓扑修正暂态模型在直流偏磁耐受评估中的应用提供必要参考。
关键词(KeyWords): 变压器拓扑修正暂态模型;直流偏磁;磁滞模拟;电磁暂态
基金项目(Foundation):
作者(Author): 李金龙;李金忠;张书琦;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.0190
参考文献(References):
- [1]Wik M,Viljanen A,Pirjola R,et al.Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden[J].Space Weather:The International Journal of Research and Applications,2008,6(7):1-11.
- [2]Bolduc L.GIC observations and studies in the Hydro-Quebec system[J].Journal of Atmospheric and Solar-Terrestrial Physics,2002,64(16):1793-1802.
- [3]蔡汉生,胡上茂,刘刚,等.牛从直流翁源接地极入地电流对周边变压器直流偏磁的影响[J].南方电网技术,2015,9(7):11-15.Cai Hansheng,Hu Shangmao,Liu Gang,et al.Influence of Wengyuan DC grounding electrode current of Niuzhai-Conghua HVDC project on DC bias of adjacent power transformers[J].Southern Power System Technology,2015,9(7):11-15(in Chinese).
- [4]程志光,高桥则雄,博扎德×弗钢尼.电气工程电磁热场模拟与应用[M].北京:科学出版社,2009:74-116,381-429.
- [5]刘春明,林晨翔,王小宁,等.海岸效应对电网地磁感应电流的影响[J].电网技术,2017,41(8):2716-2722.Liu Chunming,Lin Chenxiang,Wang Xiaoning,et al.Influence of coast effect on geomagnetically induced currents in power grid[J].Power System Technology,2017,41(8):2716-2722(in Chinese).
- [6]刘青,韩康康,徐婷,等.新疆2020年规划电网地磁感应电流的分布规律及敏感性分析[J].电网技术,2017,41(11):3678-3684.Liu Qing,Han Kangkang,Xu Ting,et al.Analysis of distribution regularities and sensitivity of geomagnetically induced currents in planned Xinjiang 750kV power grid[J].Power System Technology,2017,41(11):3678-3684(in Chinese).
- [7]Ngnegueu T,Marketos F,Xu T,et al.Behaviour of transformers under DC/GIC excitation:phenomenon,impact on design/design evaluation process and modeling aspects in support of design[C]//CIGRESession,Paris,2012:1-11.
- [8]李泓志,崔翔,卢铁兵,等.变压器直流偏磁的电路-磁路模型[J].中国电机工程学报,2009,29(27):119-125.Li Hongzhi,Cui Xiang,Lu Tiebing,et al.Electric circuit and magnetic circuit combined model of DC biased power transformer[J].Proceedings of the CSEE,2009,29(27):119-125(in Chinese).
- [9]司马文霞,刘永来,杨鸣,等.考虑铁心深度饱和的单相双绕组变压器改进模型[J].中国电机工程学报,2018,38(24):7131-7140.Sima Wenxia,Liu Yonglai,Yang Ming,et al.An improved(47)model for single-phase two winding transformers considering deep saturation of the iron core[J].Proceedings of the CSEE,2018,38(24):7131-7140(in Chinese).
- [10]潘超,王泽忠,李海龙,等.基于瞬态场路耦合模型的变压器直流偏磁计算[J].电工技术学报,2013,28(5):174-181.Pan Chao,Wang Zezhong,Li Hailong,et al.DC-Bias calculation for single phase transformers based on transient field-circuit coupled model[J].Transactions of China Electrotechnical Society,2013,28(5):174-181(in Chinese).
- [11]王泽忠,谭瑞娟,臧英,等.基于串联电阻的特高压变压器空载直流偏磁计算[J].电工技术学报,2017,32(8):129-137.Wang Zezhong,Tan Ruijuan,Zang Ying,et al.DC-bias calculation for UHV transformer in no-load by series resistance[J].Transactions of China Electrotechnical Society,2017,32(8):129-137(in Chinese).
- [12]Rezaei-Zare A.Enhanc^ed transformer model for low-and mid-frequency transients-Part I:model development[J].IEEETransactions on Power Delivery,2015,30(1):307-315.
- [13]Rezaei-Zare A.Enhanced transformer model for low-and mid-frequency transients-Part II:validation and simulation results[J].IEEE Transactions on Power Delivery,2015,30(1):316-325.
- [14]Lahtinen M,Elovaara J.GIC occurrences and GIC test for 400 kVsystem transformer[J].IEEE Transactions on Power Delivery,2002,17(2):555-561.
- [15]Rezaei-Zare A,Marti L,Narang A,et al.Analysis of three-phase transformer response due to GIC using an advanced duality-based model[J].IEEE Transactions on Power Delivery,2016,31(5):2342-2350.
- [16]Hoidalen H K,Mork B A,Gonzalez F,et al.Implementation and verification of the hybrid transformer model in ATPDraw[J].Electric Power Systems Research,2009,79(3):454-459.
- [17]Hoidalen H K,Lotfi A,Zirka S E,et al.Benchmarking of hysteretic elements in topological transformer model[J].Electric Power Systems Research,2016,138(1):33-40.
- [18]Zou M,Sima W,Yang M,et al.Improved low-frequency transformer model based on Jiles-Atherton hysteresis theory[J].IET Generation Transmission&Distribution,2017,11(4):915-923.
- [19]Zirka S E,Moroz Y I,Harrison R G,et al.Inverse hysteresis models for transient simulation[J].IEEE Transactions on Power Delivery,2014,29(2):552-559.
- [20]Zirka S E,Moroz Y I,Chiesa N,et al.Implementation of inverse hysteresis model into EMTP-Part I:static model[J].IEEETransactions on Power Delivery,2015,30(5):2224-2232.
- [21]Zirka S E,Moroz Y I,Chiesa N,et al.Implementation of inverse hysteresis model into EMTP-Part II:dynamic model[J].IEEETransactions on Power Delivery,2015,30(5):2233-2241.
- [22]Mahseredjian J.Literature survey on transformer models for the simulation of electromagnetic transients with emphasis on GICapplications[R].EPRI,Inc.,Palo Alto,CA,2012:1-54.
- [23]Lambert M,Mahseredjian J.Electromagnetic transient-type transformer models for geomagnetically-induced current(GIC)studies[R].EPRI,Inc.,Palo Alto,CA,2013:25-104.
- [24]保定天威保变电气股份有限公司组编.电力变压器手册[M].北京:机械工业出版社,2014:213-226.
- [25]Zirka S E,Moroz Y I,H?idalen H K,et al.Practical experience in using a topological model of a core-type three-phase transformer:noload and inrush conditions[J].IEEE Transactions on Power Delivery,2017,32(4):2081-2090.
- [26]Zirka S E,Moroz Y I,Arturi C M.Accounting for the influence of the tank walls in the zero-sequence topological model of a three-phase,three-limb transformer[J].IEEE Transactions on Power Delivery,2014,29(5):2172-2179.
- [27]Zirka S E,Moroz Y I,Arturi C M,et al.Topology-correct reversible transformer model[J].IEEE Transactions on Power Delivery,2012,27(4):2037-2045.
- [28]陈珩.电力系统稳态分析[M].北京:中国电力出版社,2015:20-26.
- [29]郑彬,滕文涛,项祖涛,等.基于变压器电流直流分量衰减特性的励磁涌流识别方法[J].电网技术,2017,41(6):2020-2026.Zheng Bin,Teng Wentao,Xiang Zutao,et al.A novel inrush current distinguishing scheme based on DC component decaying characteristics of transformer current[J].Power System Technology,2017,41(6):2020-2026(in Chinese).
- [30]Mork B A,Gonzalez F,Ishchenko D.Leakage inductance model for autotransformer transient simulation[C]//Int.Conf.Power Syst.Transients,Montreal,QC,Canada,2005:1-6.
- [31]Zirka S E,Moroz Y I,Moroz E Y,et al.Principles of modeling transformer transients taking into account topology and magnetic core features[J].Russian Electrical Engineering,2013,84(1):14-20.
- [32]Kulkarni S V,Khaparde S A.Transformer engineering:design,technology,and diagnostics,second edition[M].Boca Raton,FL:CRC Press,2012.
- [33]Jazebi S,Zirka S E,Lambert M,et al.Duality derived transformer models for low-frequency electromagnetic transients-Part I:topological models[J].IEEE Transactions on Power Delivery,2016,31(5):2410-2419.
- [34]Nagaoka H.The inductance coefficients of solenoids[J].Journal of the College of Science,Imperial University,1909,27(1):1-33.
- [35]Zirka S E,Moroz Y I,Elovaara J,et al.Simplified models of three-phase,five-limb transformer for studying GIC effects[J].International Journal of Electrical Power&Energy Systems,2018,103(1):168-175.