基于波动规律挖掘的风电功率超短期预测方法Ultra-short-term Forecasting Method of Wind Power Based on Fluctuation Law Mining
梁志峰;王铮;冯双磊;董存;万筱钟;丘刚;
摘要(Abstract):
风电功率超短期预测是调整日内发电计划、开展风电增量现货交易、提高风电消纳的基础之一。针对风电功率超短期预测精度提升问题,有别其他单纯引入预测算法的研究思路,以挖掘和分析风电功率的固有波动规律为切入点,围绕风电波动规律在超短期预测中的利用问题研究新方法。具体来说,在认识风电出力序列高频低能量随机波动和低频高能量波动构成特点的基础上,研究了低频高能量波动自动识别和提取方法,发现了风电出力序列的低频高能量波动复演特征,并采用波动特征匹配与融合方法加以利用,提出了基于低频类波动过程挖掘与动态融合的超短期预测新思路。以实际数据进行仿真,结果显示所提出的方法正确可行,且与其他方法比较发现,所提出方法的预测性能提升显著。目前该方法已在西北地区应用。
关键词(KeyWords): 风力发电;超短期预测;波动构成;低频波动;波动特征匹配;波动规律挖掘
基金项目(Foundation): 国家重点基础研究发展计划项目(2018YFB0904200);; 国家电网有限公司科技项目(SGNXDK00DWJS1800013)~~
作者(Author): 梁志峰;王铮;冯双磊;董存;万筱钟;丘刚;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.2472
参考文献(References):
- [1]国家能源局.2018年风电并网运行情况[EB/OL].[2019-11-08].http://www.nea.gov.cn/2019-01/28/c_137780779.htm.
- [2]舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-8.Shu Yinbiao,Zhang Zhigang,Guo Jianbo,et al.Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE,2017,37(1):1-8(in Chinese).
- [3]谢开.美国电力市场运行与监管实例分析[M].北京:中国电力出版社,2017.
- [4]Krishna V B,Wadman W S,Kim Y.NowCasting:accurate and precise short-term wind power prediction using hyperlocal wind forecasts[C]//9th ACM International Conference on Future Energy Systems.2018,Karlsruhe,GERMANY:63-74.
- [5]王铮,Rui Pestana,冯双磊,等.基于加权系数动态修正的短期风电功率组合预测方法[J].电网技术,2017,41(2):500-507.Wang Zheng,Rui Pestana,Feng Shuanglei,et al.Short-term wind power combination forecasting method based on dynamic coefficient updating[J].Power System Technology,2017,41(2):500-507(in Chinese).
- [6]Payne T J.Rapid update cycling with delayed observations[J].Tellus Series A-Dynamic Meteorology and Oceanography,2017(36):1-17.
- [7]Cheng W YY,Liu Yubao,Bourgeois A J.et al.Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation[J].Renewable Energy,2017(107):340-351.
- [8]Poterjoy J,Sobash R A,Anderson J L.Convective-scale data assimilation for the weather research and forecasting model using the local particle filter[J].Monthly Weather Review,2017(145):1897-1918.
- [9]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.Pan Difu,Liu Hui,Li Yanfei.A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J].Power System Technology,2008,32(7):82-86(in Chinese).
- [10]黄帅.风电场超短期功率预测方法的研究[D].成都:电子科技大学,2012.
- [11]李智,韩学山,韩力,等.地区电网风电场功率超短期预测方法[J].电力系统自动化,2010,34(7):90-94.Li Zhi,Han Xueshan,Han Li,et al.An ultra-short-term wind power forecasting method in regional grids[J].Automatic of Electric Power Systems,2010,34(7):90-94(in Chinese).
- [12]Ju Yun,Sun Guangyu,Chen Quanhe,et al.A model combining convolutional neural network and light GBM algorithm for ultra-short-term wind power forecasting[J].IEEE Access,2019(7):28309-28318.
- [13]朱乔木,李弘毅,王子琪,等.基于长短期记忆网络的风电场发电功率超短期预测[J].电网技术,2017,41(12):3797-3802.Zhu Qiaomu,Li Hongyi,Wang Ziqi,et al.Ultra-short term wind power forecasting based on LSTM[J].Power System Technology,2017,41(12):3797-3802(in Chinese).
- [14]徐龙博,王伟,张滔,等.基于神经网络平均影响值的超短期风电功率预测[J].电力系统自动化,2017,41(21):40-45.Xu Longbo,Wang Wei,Zhang Tao,et al.Ultra-short-term wind power prediction based on neural network and mean impact value[J].Automatic of Electric Power Systems,2017,41(21):40-45(in Chinese).
- [15]薛阳,王琳,王舒,等.一种结合CNN和GRU网络的超短期风电预测模型[J].可再生能源,2019,37(3):456-462.Xue Yang,Wang Lin,Wang Shu,et al.An ultra-short-term wind power forecasting model combined with CNN and GRU networks[J].Renewable Energy Resources,2019,37(3):456-462(in Chinese).
- [16]Lu Peng,Ye Lin,Sun Bohao,et al.A new hybrid prediction method of ultra-short-term wind power forecasting based on EEMD-PE and LSSVM optimized by the GSA[J].Energies,2018,11(4):1-13.
- [17]李燕青,袁燕舞,郭通.基于AMD-ICSA-SVM的超短期风电功率组合预测[J].电力系统保护与控制,2017,45(14):113-120.Li Yanqing,Yuan Yanwu,Guo Tong.Combination ultra-short-term prediction of wind power based on AMD-ICSA-SVM[J].Power System Protection and Control,2017,45(14):113-120(in Chinese).
- [18]Liu Fang,Li Ranran,Dreglea A.Wind speed and power ultra short-term robust forecasting based on Takagi-Sugeno fuzzy model[J].Energies,2019,12(18):1-16.
- [19]Niu Dongxiao,Pu Di,Dai Shuyu.Ultra-short-term wind-power forecasting based on the weighted random forest optimized by the niche immune lion algorithm[J].Energies,2018,11(5):1-21.
- [20]Hong D Y,Ji T Y,Li M S,et al.Ultra-short-term forecast of wind speed and wind power based on morphological high frequency filter and double similarity search algorithm[J].Electrical Power and Energy Systems,2019(104):868-879.
- [21]杨茂,周宜.计及风电场状态的风电功率超短期预测[J].中国电机工程学报,2019,39(5):1259-1267.Yang Mao,Zhou Yi.Ultra-short-term prediction of wind power considering wind farm status[J].Proceedings of the CSEE,2019,39(5):1259-1267(in Chinese).
- [22]罗培屿.基于空间相关性的超短期风速预测方法与应用[D].湘潭:湘潭大学,2012.
- [23]郁琛,薛禹胜,文福拴,等.按时序特征优化模型后在线选配的超短期风电预测[J].电力系统自动化,2015,39(8):5-11.Yu Chen,Xue Yusheng,Wen Fushuan,et al.An ultra-short-term wind power prediction method using“offline classification and optimization,online model matching”based on time series features[J].Automatic of Electric Power Systems,2015,39(8):5-11(in Chinese).
- [24]杨秀媛,裘微江,金鑫城,等.改进K近邻算法在风功率预测及风水协同运行中的应用[J].电网技术,2018,42(3):772-778.Yang Xiuyuan,Qiu Weijiang,Jin Xincheng,et al.Wind power prediction based on improved k-nearest neighbor algorithm and its application in co-operation of wind and hydro powers[J].Power System Technology,2018,42(3):772-778(in Chinese).
- [25]韩炼冰,段俊红,房利国,等.一种基于FPGA的随机数检验实现方法[J].通信技术,2017,50(11):2584-2588.Han Lianbing,Duan Junhong,Fang Liguo,et al.Implementation method of random-number test based on FPGA[J].Communication Technology,2017,50(11):2584-2588(in Chinese).
- [26]Bujang M A,Sapri F E.An application of the runs test to test for randomness of observations obtained from a clinical survey in an ordered population[J].Malaysian Journal of Medical Sciences,2018,25(4):146-151.
- [27]史道济.实用极值统计方法[M].天津:天津科学技术出版社,2006.