考虑风速时空相关特性的元启发式支配预测模型Meta-heuristic Dominance Prediction Model Considering Wind Speed Spatio-temporal Correlation Characteristics
潘超;王典;蔡国伟;杨雨晴;于凤娇;
摘要(Abstract):
为了提高大型风场风功率预测的精度和效率,构建动物种群仿生算法分别嵌入空间提取及多步预测双模块的组合预测模型。对于风速特征提取模块,利用基于动物寻巢行为的仿生算法嵌套卷积神经网络。优选典型风机位置信息,结合典型风机数据重构空间风速矩阵,通过降低输入数据复杂度以提高提取效率。利用卷积神经网络提取重构矩阵特征信息,实现风速特征信息降维。针对多步预测模块参数设置问题,采用基于动物繁衍行为的寻优算法优化支持向量回归模型参数,结合空间特征信息对风速进行多步预测,将所得风速预测值通过等效风能利用系数法进行风功率预测。最后,将文中方法应用于实际风场的风速及风功率预测,通过对比分析验证所提方法。
关键词(KeyWords): 风速预测;时空相关性;卷积神经网络;支持向量回归
基金项目(Foundation): 国家重点研发计划重点专项(2016YFB0900100);; 国家自然科学基金项目(51507028)~~
作者(Author): 潘超;王典;蔡国伟;杨雨晴;于凤娇;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.2627
参考文献(References):
- [1]刘德伟,郭剑波,黄越辉,等.基于风电功率概率预测和运行风险约束的含风电场电力系统动态经济调度[J].中国电机工程学报,2013,33(16):9-15.Liu Dewei,Guo Jianbo,Huang Yuehui,et al.Dynamic economic dispatch of wind integrated power system based on wind power probabilistic forecasting and operation risk constraints[J].Proceedings of the CSEE,2013,33(16):9-15(in Chinese).
- [2]向红吉,戴朝华,明杰,等.考虑低谷时刻负调峰能力及风电预测区间的多目标机组组合优化研究[J].电网技术,2017,41(6):1912-1918.Xiang Hongji,Dai Chaohua,Ming Jie,et al.Research on multi-objective optimization of unit commitment considering negative peak load regulation ability in valley load period and wind power prediction interval[J].Power System Technology,2017,41(6):1912-1918(in Chinese).
- [3]Hu Q,Zhang S,Yu M,et al.Short-term wind speed or power forecasting with heteroscedastic support vector regression[J].IEEETransactions on Sustainable Energy,2017,7(1):241-249.
- [4]Cadenas E,Rivera W,Campos-Amezcua R,et al.Wind speed prediction using a univariate ARIMA model and a multivariate NARXmodel[J].Energies,2016,9(2):109.
- [5]冯双磊,王伟胜,刘纯,等.基于物理原理的风电场短期风速预测研究[J].太阳能学报,2011,32(5):611-616.Feng Shuanglei,Wang Weisheng,Liu Chun,et al.Short term wind speed prediction based on physical principle[J].Acta Energiae Solaris Sinica,2011,32(5):611-616(in Chinese).
- [6]丁藤,冯冬涵,林晓凡,等.基于修正ARIMA-GARCH模型的超短期风速预测[J].电网技术,2017,41(6):1808-1814.Ding Teng,Feng Donghan,Lin Xiaofan,et al.Ultra-short-term wind speed forecasting based on improved ARIMA-GARCH model[J].Power System Technology,2017,41(6):1808-1814(in Chinese).
- [7]Schicker I,Papazek P,Kann A,et al.Short-range wind speed predictions for complex terrain using an interval-artificial neural network[J].Energy Procedia,2017(125):199-206.
- [8]李玲玲,许亚惠,田晓越,等.基于组合模型的风电功率短期预测[J].电工技术学报,2014,29(S1):475-480.Li Lingling,Xu Yahui,Tian Xiaoyue,et al.Short-term prediction of wind power based on combined model[J].Journal of Electric Engineering,2014,29(S1):475-480(in Chinese).
- [9]Wang Shouxiang,Zhang Na,Wu Lei,et al.Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network[J].Renewable Energy,2016(94):629-636.
- [10]张妍,王东风,韩璞.一种风电场短期风速组合预测模型[J].太阳能学报,2017,38(6):1510-1516.Zhang Yan,Wang Dongfeng,Han Pu.Combination forecasting model of short-term wind speed for wind farm[J].Acta Energiae Solaris Sinica,2017,38(6):1510-1516(in Chinese).
- [11]秦琼,刘树洁,赖旭,等.GA优化ELM神经网络的风电场测风数据插补[J].太阳能学报,2018(8):2125-2132.Qin Qiong,Liu Shujie,Lai Xu,et al.Interpolation of wind data from wind farms using GA-optimized ELM neural network[J].Journal of Solar Energy,2018(8):2125-2132(in Chinese).
- [12]Safari N,Chung C Y,Price G C D.A novel multi-step short-term wind power prediction framework based on chaotic time series analysis and singular spectrum analysis[J].IEEE Transactions on Power Systems,2017:1-1.
- [13]潘超,谭启德,蔡国伟,等.基于递归量化分析的COA-SVR短期风速组合预测模型[J].电网技术,2018,42(8):2373-2381.Pan Chao,Tan Qide,Cai Guowei,et al.COA-SVR short-term wind speed hybrid prediction model based on recursive quantitative analysis[J].Power System Technology,2018,42(8):2373-2381(in Chinese).
- [14]Wang H Z,Li G Q,Wang G B,et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J].Applied Energy,2017(188):56-70.
- [15]Hui Liu,Xiwei Mi,Yanfei Li,et al.Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis,convolutional gated recurrent unit network and support vector regression[J].Renewable Energy,2019,143(12):842-854.
- [16]陈宁,薛禹胜,丁杰,等.利用空间相关性的超短期风速预测[J].电力系统自动化,2017,41(12):124-130.Chen Ning,Xue Yusheng,Ding Jie,et al.Ultra-short-term wind speed prediction using spatial correlation[J].Automation of Electric Power Systems,2017,41(12):124-130(in Chinese).
- [17]Cadenas E,Jaramillo O A,Rivera W.Analysis and forecasting of wind velocity in Chetumal,Quintana Roo,using the single exponential smoothing method[J].Renewable Energy,2010,35(5):925-930.
- [18]邹金,朱继忠,赖旭,等.基于时空自回归移动平均模型的风电出力序列模拟[J].电力系统自动化,2019,43(3):101-109.Zou Jin,Zhu Jizhong,Lai Xu,et al.Simulation of wind power output sequence based on spatiotemporal autoregressive moving average model[J].Automation of Electric Power Systems,2019,43(3):101-109(in Chinese).
- [19]潘超,秦本双.基于实测数据的大型风电场功率模型研究[J].电网技术,2017,41(8):2625-2631.Pan Chao,Qin Benshuang.Research on power model of large-scale wind farm based on measured data[J].Power System Technology,2017,41(8):2625-2631(in Chinese).
- [20]Ding J,Liu H,Huang M.Convolutional neural network with data augmentation for SAR target recognition[J].IEEE Geosci Remote Sens Lett,2016,13(3):1-5.
- [21]Wang J Z,Zhou Q P,Jiang H Y,et al.Short-term wind speed forecasting using support vector regression optimized by cuckoo optimization algorithm[J].Mathematical Problems in Engineering,2015(PT.12):1-13.
- [22]彭道刚,陈跃伟,钱玉良,等.基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J].电工技术学报,2018,33(8):1742-1749+1761.Peng Daogang,Chen Yuewei,Qian Yuliang,et al.Soft-measurement model of transformer winding temperature based on particle swarm optimization-support vector regression[J].Transactions of China Electrotechnical Society,2018,33(8):1742-1749+1761(in Chinese).
- [23]朱霄珣,韩中合.基于PSO参数优化的LS-SVM风速预测方法研究[J].中国电机工程学报,2016,36(23):6337-6342+6598.Zhu Xiaoxun,Han Zhonghe.Research on LS-SVM wind speed prediction method based on PSO parameter optimization[J].Proceedings of the CSEE,2016,36(23):6337-6342+6598(in Chinese).
- [24]胡梦月,胡志坚,仉梦林,等.基于改进AdaBoost.RT和KELM的风功率预测方法研究[J].电网技术,2017,41(2):536-542.Hu Mengyue,Hu Zhijian,Zhang Menglin,et al.Study on wind power prediction method based on improved AdaBoost.RT and KELM[J].Power System Technology,2017,41(2):536-542(in Chinese).
- [25]叶瑞丽,郭志忠,刘瑞叶,等.基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J].电工技术学报,2017,32(21):103-111.Ye Ruili,Guo Zhizhong,Liu Ruiye,et al.Wind speed and wind power prediction of wind farm based on wavelet packet decomposition and improved Elman neural network[J].Transactions of China Electrotechnical Society,2017,32(21):103-111(in Chinese).
- [26]潘超,秦本双,何瑶,等.基于优化FCM聚类的RELM风速预测[J].电网技术,2018,42(3):842-848.Pan Chao,Qin Benshuang,He Yao,et al.RELM wind speed prediction based on optimized FCM clustering[J].Power System Technology,2018,42(3):842-848(in Chinese).