基于注意力机制的CNN-GRU短期电力负荷预测方法A Short-term Power Load Forecasting Method Based on Attention Mechanism of CNN-GRU
赵兵;王增平;纪维佳;高欣;李晓兵;
摘要(Abstract):
高效准确的短期电力负荷预测能帮助电力部门合理制定生产调度计划,减少资源浪费。深度学习中以循环神经网络(recurrent neural network,RNN)为主体构建的预测模型是短期负荷预测方法中的典型代表,但存在难以有效提取历史序列中潜在高维特征且当时序过长时重要信息易丢失的问题。提出了一种基于Attention机制的卷积神经网络(convolutional neural network,CNN)-GRU (gated recurrent unit)短期电力负荷预测方法,该方法将历史负荷数据作为输入,搭建由一维卷积层和池化层等组成的CNN架构,提取反映负荷复杂动态变化的高维特征;将所提特征向量构造为时间序列形式作为GRU网络的输入,建模学习特征内部动态变化规律,并引入Attention机制通过映射加权和学习参数矩阵赋予GRU隐含状态不同的权重,减少历史信息的丢失并加强重要信息的影响,最后完成短期负荷预测。以美国某公共事业部门提供的公开数据集和中国西北某地区的负荷数据作为实际算例,该方法预测精度分别达到了97.15%和97.44%,并与多层感知机(multi-layer perceptron,MLP)、径向基神经网络(radial basis function neural network,RBF)、支持向量回归(support vector regression,SVR)、GRU、CNN、自编码器(autoencoder,AE)-GRU和未引入Attention机制的CNN-GRU进行对比,实验结果表明所提方法具有更高的预测精度。
关键词(KeyWords): 短期负荷预测;卷积神经网络;门控循环单元;注意力机制
基金项目(Foundation): 国家重点研发计划项目((2016YFF0201201)~~
作者(Author): 赵兵;王增平;纪维佳;高欣;李晓兵;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.1524
参考文献(References):
- [1] Khwaja A S,Zhang X,Anpalagan A,et al.Boosted neural networks for improved short-term electric load forecasting[J].Electric Power Systems Research,2017(143):431-437.
- [2] Nury A H, Hasan K, Alam M J B. Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh[J].Journal of King Saud University-Science,2017,29(1):47-61.
- [3] Qiu X,Ren Y,Suganthan P N,et al.Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J].Applied Soft Computing,2017(54):246-255.
- [4]赵峰,孙波,张承慧.基于多变量相空间重构和卡尔曼滤波的冷热电联供系统负荷预测方法[J].中国电机工程学报,2016,36(2):399-406.Zhao Feng,Sun Bo,Zhang Chenghui.Cooling,heating and electrical load forecasting method for CCHP system based on multivariate phase space reconstruction and kalman filter[J].Proceedings of the CSEE,2016,36(2):399-406(in Chinese).
- [5] Eroshenko S A,Poroshin V I,Senyuk M D,et al.Expert models for electric load forecasting of power system[C]//Young Researchers in Electrical&Electronic Engineering.St. Petersburg:IEEE,2017:1507-1513.
- [6]蒋敏,顾东健,孔军,等.基于在线序列极限支持向量回归的短期负荷预测模型[J].电网技术,2018,42(7):2240-2247.Jiang Min,Gu Dongjian,Kong Jun,et al.Short-term load forecasting model based on online sequential extreme support vector regression[J].Power System Technology,2018,42(7):2240-2247(in Chinese).
- [7] Houimli R,Zmami M,Salha O B.Short-term electric load forecasting in Tunisia using artificial neural networks[J/OL].Energy Systems,2019:1-19[2019-07-20]. https://link.springer.com/article/10.1007/s12667-019-00324-4#citeas.
- [8]冯凯.基于大数据的居民用电行为分析与负荷预测[D].北京:华北电力大学,2017.
- [9]苏小林,刘孝杰,阎晓霞,等.计及需求响应的主动配电网短期负荷预测[J].电力系统自动化,2018,42(10):60-66.Su Xiaolin,Liu Xiaojie,Yan Xiaoxia,et al.Short-term load forecasting of active distribution network based on demand response[J].Automation of Electric Power Systems,2018,42(10):60-66(in Chinese).
- [10]李冬辉,尹海燕,郑博文.基于MFOA-GRNN模型的年电力负荷预测[J].电网技术,2018,42(2):585-590.Li Donghui,Yin Haiyan,Zheng Bowen.An annual load forecasting model based on generalized regression neural network with multi-swarm fruit fly optimization algorithm[J]. Power System Technology,2018,42(2):585-590(in Chinese).
- [11] Wang S X,Wang X,Wang S M,et al.Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting[J].Electrical Power and Energy Systems,2019(109):470-479.
- [12]孔祥玉,郑锋,鄂志君,等.基于深度信念网络的短期负荷预测方法[J].电力系统自动化,2018,42(5):l33-139.Kong Xiangyu,Zheng Feng,E Zhijun,et al.Short-term load forecasting based on deep belief network[J].Automation of Electric Power Systems,2018,42(5):l33-139(in Chinese).
- [13] Mohammad F,Lee K B,Kim Y C.Short term load forecasting using deep neural networks[EB/OL].(2018-10-01).https://arxiv.org/pdf/1811.03242.pdf.
- [14] Tong C,Li J,Lang C,et al.An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders[J].Journal of Parallel and Distributed Computing,2018(117):267-273.
- [15] Hao Z,Liu G,Zhang H.Correlation filter-based visual tracking via adaptive weighted CNN features fusion[J].IET Image Processing,2018,12(8):1423-1431.
- [16] Dong X,Qian L,Huang L.Short-term load forecasting in smart grid:a combined CNN and K-Means clustering approach[C]//IEEE International Conference on Big Data and Smart Computing.Jeju:IEEE,2017:119-125.
- [17] Wang Y, Chen Q X, Gan D H, et al. Deep learning-based socio-demographic information identification from smart meter data[J].IEEE Transactions on Smart Grid,2019,10(3):2593-2602.
- [18] Graves A.Generating sequences with recurrent neural networks[EB/OL].(2014-06-05).https://arxiv.org/pdf/1308.0850.pdf.
- [19] Rahman A, Srikumar V, Smith A D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks[J].Applied Energy,2018(212):372-385.
- [20]张宇帆,艾芊,林琳,等.基于深度长短时记忆网络的区域级超短期负荷预测方法[J].电网技术,2019,43(6):1884-1892.Zhang Yufan,Ai Qian,Lin Lin,et al.A very short-term load forecasting method based on deep LSTM RNN at zone level[J].Power System Technology,2019,43(6):1884-1892(in Chinese).
- [21]李鹏,何帅,韩鹏飞,等.基于长短期记忆的实时电价条件下智能电网短期负荷预测[J].电网技术,2018,12(12):4045-4052.Li Peng,He Shuai,Han Pengfei,et al.Short-term load forecasting of smart grid based on long-short-term memory recurrent neural networks in condition of real-time electricity price[J].Power System Technology,2018,12(12):4045-4052(in Chinese).
- [22] Ke K,Hongbin S,Chengkang Z,et al.Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network[J].Evolutionary Intelligence,2019,12(3):385-394.
- [23] Cinar Y G,Mirisaee H,Goswami P,et al.Period-aware content attention RNNs for time series forecasting with missing values[J].Neurocomputing,2018(312):177-186.
- [24] Bahdanau D,Cho K H,Bengio Y.Neural machine translation by jointly learning to align and translate[EB/OL].(2014-09-01).https://arxiv.org/pdf/1409.0473v2.pdf.
- [25] Ping-Huan K, Chiou-Jye H. A high precision artificial neural networks model for short-term energy load forecasting[J].Energies,2018,11(1):213-226.
- [26] Wang Y,Liao W,Chang Y.Gated recurrent unit network-based short-term photovoltaic forecasting[J].Energies,2018,11(8):1-14.
- [27] Cho K,Merrienboer B V,Bahdanau D,et al.On the properties of neural machine translation:encoder-decoder approaches[EB/OL].(2014-09-03).https://arxiv.org/pdf/1409.1259.pdf.
- [28] Kingma D P, Ba J. Adam:a method for stochastic optimization[EB/OL].(2014-12-22). https://arxiv.org/pdf/1412.6980.pdf.