跨层级多区域电力系统AGC全过程动态仿真建模及验证Construction and Validation of AGC Full Dynamic Simulation Models for Cross-level and Multi-area Power Systems
肖雄;宋新立;谈超;苏志达;刘涛;王民昆;吴国旸;
摘要(Abstract):
针对现有仿真软件无法准确模拟跨层级多区域AGC系统的动作特性及控制效果问题,提出了一种适用于电力系统机电暂态及中长期的全过程动态仿真的AGC模型。该模型包含主站侧–电厂(集控)侧–机组侧三层架构,支持自定义各电网区域性控制策略,定频率控制(FFC)、定交换功率控制(FTC)和联络线功率和频率偏差控制(TBC)多种控制模式,优先级和指定比例等多种AGC指令分配方式。模型在电力系统全过程动态仿真程序(PSD-FDS)中予以实现,并基于西南电网异步试验中的实测数据对模型准确性进行验证。仿真结果表明,该模型可为系统频率及联络线功率控制、AGC策略优化等研究提供有效的仿真手段。
关键词(KeyWords): AGC仿真建模;跨层级多区域AGC系统;全过程动态仿真;主站侧–电厂侧–机组侧三层架构
基金项目(Foundation): 国家电网有限公司科技项目(异步互联方式下西南电网跨层级多区域频率协调控制关键技术研究与应用)~~
作者(Author): 肖雄;宋新立;谈超;苏志达;刘涛;王民昆;吴国旸;
Email:
DOI: 10.13335/j.1000-3673.pst.2020.0992
参考文献(References):
- [1]李明节.大规模特高压交直流混联电网特性分析与运行控制[J].电网技术,2016,40(4):985-991.Li Mingjie.Characteristics analysis and operational control of large-scale hybrid UHV AC/DC power grids[J].Power System Technology,2016,40(4):985-991(in Chinese).
- [2]王歆,张怡,王官宏,等.高比例水电送出系统超低频频率振荡风险及影响因素分析[J].电网技术,2019,43(1):234-240.Wang Xin,Zhang Yi,Wang Guanhong,et al.Research on ultra-low frequency oscillation risk and influencing factors of high-ratio hydroelectric transmission system[J].Power System Technology,2019,43(1):234-240(in Chinese).
- [3]刘勤,余锐,刘柏私,等.藏中联网工程投运后西藏电网网源协调控制研究[J].电网技术,2020,44(3):1188-1196.Liu Qin,Yu Rui,Liu Baisi,et al.Research on coordination between grid and generator of Tibet power grid after operation of Central Tibet networking project[J].Power System Technology,2020,44(3):1188-1196(in Chinese).
- [4]陈锦洲,段荣华,陈磊,等.电力系统调频控制相关的频率振荡问题[J].电力系统自动化,2019,43(18):82-87.Chen Jinzhou,Duan Ronghua,Chen Lei,et al.Frequency oscillation related to frequency regulation control of power system[J].Automation of Electric Power Systems,2019,43(18):82-87(in Chinese).
- [5]杨荣照,陈亦平,夏成军,等.高比例水电系统AGC稳定性分析及控制策略优化[J].电网技术,2020,44(3):880-886.Yang Rongzhao,Chen Yiping,Xia Chengjun,et al.Stability analysis and control strategy optimization of AGC with high-proportion hydropower system[J].Power System Technology,2020,44(3):880-886(in Chinese).
- [6]徐敏,陈亦平,涂亮,等.异步联网后AGC超调引起频率波动的问题分析[J].广东电力,2017,30(5):81-86.Xu Min,Chen Yiping,Tu Liang,et al.Analysis on frequency fluctuation caused by AGC overshoot after asynchronous interconnection[J].Guangdong Electric Power,2017,30(5):81-86(in Chinese).
- [7]杨可,谈超,王民昆,等.高比例水电多直流弱送端电网自动发电控制的优化方法[J].电力系统自动化,2019,43(11):166-173.Yang Ke,Tan Chao,Wang Minkun,et al.Optimization method for automatic generation control in multi-DC weak sending power grid with high proportion of hydropower[J].Automation of Electric Power Systems,2019,43(11):166-173(in Chinese).
- [8]谈超,戴则梅,滕贤亮,等.基于修正区域控制偏差的多区域协同控制技术:(一)驱动、现状与发展建议[J].电力系统自动化,2017,41(1):88-94.Tan Chao,Dai Zemei,Teng Xianliang,et al.Applied technology of coordinated control among multiple control areas based on ACEcorrection:part one driving force,state-of-the-art and proposed development[J].Automation of Electric Power Systems,2017,41(1):88-94(in Chinese).
- [9]马晓伟,徐瑞,滕贤亮,等.基于事件驱动的西北电网紧急备用支援技术[J].电网技术,2018,42(8):2645-2650.Ma Xiaowei,Xu Rui,Teng Xianliang,et al.Emergency reserve support technology basing on event-driven for Northwest China Power Grid[J].Power System Technology,2018,42(8):2645-2650(in Chinese).
- [10]陈绪江,张星,田芳,等.含大量电磁直流模型的机电-电磁暂态混合仿真技术研究[J].电网技术,2020,44(4):1203-1210.Chen Xujiang,Zhang Xing,Tian Fang,et al.Electromechanicalelectromagnetic hybrid simulation technology with large number of electromagnetic HVDC models[J].Power System Technology,2020,44(4):1203-1210(in Chinese).
- [11]瞿合祚,黄彦浩,李晓明,等.机电暂态仿真中直流输电系统恢复特性曲线修正方法[J].电力信息与通信技术,2018,16(6):43-51.Qu Hezuo,Huang Yanhao,Li Xiaoming,et al.Correction method for recovery characteristic curve of HVDC transmission system in electro-mechanical transient simulation[J].Electric Power Information and Communication Technology,2018,16(6):43-51(in Chinese).
- [12]赵琦,王新迎,乔骥.数据驱动的能源互联网建模与仿真关键技术[J].电力信息与通信技术,2020,18(1):39-45.Zhao Qi,Wang Xinying,Qiao Ji.Key technologies of data-driven energy interconnection modeling and simulation[J].Electric Power Information and Communication Technology,2020,18(1):39-45(in Chinese).
- [13]Wang Lu,Chen Dingguo.Extended term dynamic simulation for AGC with smart grids[C]//IEEE Power and Energy Society General Meeting.Detroit,Michigan,USA:IEEE,2011:3790-3796.
- [14]Ba Y,Li W D.A simulation scheme for AGC relevant studies[J].IEEE Transactions on Power Systems,2013,28(4):3621-3628.
- [15]陈锦洲,陈磊,陈亦平,等.基于Pade近似的电力系统频率振荡模式延时轨迹分析[J].电力系统自动化,2019,43(14):120-125.Chen Jinzhou,Chen Lei,Chen Yiping,et al.Trajectory analysis of time delay for frequency oscillation mode of power system based on Pade approximation[J].Automation of Electric Power Systems,2019,43(14):120-125(in Chinese).
- [16]宋新立,王成山,仲悟之,等.电力系统全过程动态仿真中的自动发电控制模型[J].电网技术,2013,37(12):3439-3444.Song Xinli,Wang Chengshan,Zhong Wuzhi,et al.Modeling of automatic generation control for power system transient,medium-term and long-term stabilities simulations[J].Power System Technology,2013,37(12):3439-3444(in Chinese).
- [17]高宗和.自动发电控制算法的几点改进[J].电力系统自动化,2001,25(22):49-51.Gao Zonghe.Some algorithmic improvements on AGC software[J].Automation of Electric Power Systems,2001,25(22):49-51(in Chinese).
- [18]高宗和,滕贤亮,涂力群.互联电网AGC分层控制与CPS控制策略[J].电力系统自动化,2004,28(1):78-81.Gao Zonghe,Teng Xianliang,Tu Liqun.Hierarchical AGC mode and CPS control strategy for interconnected power systems[J].Automation of Electric Power Systems,2004,28(1):78-81(in Chinese).
- [19]张天际,张朋,耿少博,等.基于装置仿真的远动信息自动对点系统的设计与实现[J].电力信息与通信技术,2019,17(10):38-43.Zhang Tianji,Zhang Peng,Geng Shaobo,et al.Design and implementation of remote-control information automatic checkpoint system based on device simulation[J].Electric Power Information and Communication Technology,2019,17(10):38-43(in Chinese).
- [20]徐瑞,滕贤亮,丁恰,等.适应电网多复杂工况的AGC控制模式转换技术研究[J].电网技术,2016,40(6):1785-1791.Xu Rui,Teng Xianliang,Ding Qia,et al.Study of AGC control mode changing technology for complex condition of power grid[J].Power System Technology,2016,40(6):1785-1791(in Chinese).
- [21]宋新立,王成山,刘涛,等.电力系统全过程动态仿真中的机炉协调控制系统模型研究[J].中国电机工程学报,2013,33(25):167-172.Song Xinli,Wang Chengshan,Liu Tao,et al.Modeling of boiler-turbine coordinated control system in coal-fired power plants for power system unified dynamic simulation of transient,medium-term and long-term stabilities[J].Proceedings of the CSEE,2013,33(25):167-172(in Chinese).