基于最小二乘支持向量机的短期负荷预测Short-Term Load Forecasting Based on Least Squares Support Vector Machines
耿艳;韩学山;韩力;
摘要(Abstract):
提出了结合粗糙集(rough sets,RS)理论和遗传算法(genetic algorithm,GA)的最小二乘支持向量机(least squares support vector machines,LS-SVM)短期负荷预测模型和算法。由于影响负荷预测精度的因素众多,该模型采用RS理论进行历史数据的预处理,对各条件属性进行约简分析。属性约简采用GA进行寻优,以确定与负荷密切相关的因素,作为LS-SVM的有效输入变量。在预测过程中,通过GA对LS-SVM的模型参数进行自适应寻优,从而提高负荷预测精度,避免LS-SVM对经验的依赖以及预测过程中对模型参数的盲目选择。采用上述方法对山东电网负荷进行了预测分析,结果证明了该方法的有效性。
关键词(KeyWords): 电力系统;短期负荷预测;支持向量机;粗糙集;遗传算法
基金项目(Foundation): 国家自然科学基金资助项目(50377021,50677036)~~
作者(Author): 耿艳;韩学山;韩力;
Email:
DOI:
参考文献(References):
- [1]Suykens J A K,Vandewalle J.Recurrent least squares support vector machines[J].IEEE Trans on Circuits and Systems,2000,47(7):1109-1114.
- [2]赵登福,王蒙,张讲社,等.基于支持向量机方法的短期负荷预测[J].中国电机工程学报,2002,22(4):26-30.Zhao Dengfu,Wang Meng,Zhang Jiangshe,et al.A support vector machines approach for short-term load forecasting[J].Proceedings of the CSEE,2002,22(4):26-30(in Chinese).
- [3]李元诚,方廷建,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59.Li Yuancheng,Fang Tingjian,Yu Erkeng.Study of support vector machines for short-term load forecasting[J].Proceedings of the CSEE,2003,23(6):55-59(in Chinese).
- [4]Chen B J,Chang M W,Lin C J.Load forecasting using support vector machines:a study on EUNITE competition2001[J].IEEE Trans on Power Systems,2004,19(4):1821-1830.
- [5]Barreto G A,Araujo A F R.Identification and control of dynamical systems using the self-organizing map[J].IEEE Trans on Neural Network,2004,15(5):1244-1259.
- [6]张林,刘先珊,阴和俊.基于时间序列的支持向量机在负荷预测中的应用[J].电网技术,2004,28(10):38-41.Zhang Lin,Liu Xianshan,Yin Hejun.Application of support vector machines based on time sequence in power system load forecasting[J].Power System Technology,2004,28(10):38-41(in Chinese).
- [7]Wu Haishan,Zhang Shen.Power load forecasting with least squares support vector machines and chaos theory[C].IEEE International Conference on Neural Networks and Brain(ICNN&B'05),2005:1020-1024.
- [8]赵登福,庞文晨,张讲社,等.基于贝叶斯理论和在线学习支持向量机的短期负荷预测[J].中国电机工程学报,2005,25(13):8-13.Zhao Dengfu,Pang Wenchen,Zhang Jiangshe,et al.Based on Bayesian theory and online learning SVM for short term load forecasting[J].Proceedings of the CSEE,2005,25(13):8-13(in Chinese).
- [9]Xu Tao,He Renmu,Wang Peng,et al.Input dimension reduction for load forecasting based on support vector machines[C].International Conference on DRPT,Hong Kong,2004:510-514.
- [10]牛东晓,谷志红,邢棉,等.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12.Niu Dongxiao,Gu Zhihong,Xing Mian,et al.Study on forecasting approach to short-term load of SVM based on data mining[J].Proceedings of the CSEE,2006,26(18):6-12(in Chinese).
- [11]张文修,吴伟志.粗糙集理论与方法[M].北京:科学出版社,2005:4-35.
- [12]谢宏,程浩忠,张国立,等.基于粗糙集理论建立短期电力负荷神经网络预测模型[J].中国电机工程学报,2003,23(11):1-4.Xie Hong,Cheng Haozhong,Zhang Guoli,et al.Applying rough set theory to establish artificial neural networks for short term load forecasting[J].Proceedings of the CSEE,2003,23(11):1-4(in Chinese).
- [13]Li Yuancheng,Li Bo,Fang Tingjian.An approach to forecast short-term load of support vector machines based on rough sets[C].Fifth World Congress on Intelligent Control and Automation,Hangzhou,China,2004:5180-5184.
- [14]谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22.Xie Hong,Wei Jiangping,Liu Heli.Parameter selection and optimization method of SVM model for short-term load forecasting[J].Proceedings of the CSEE,2006,26(22):17-22(in Chinese).
- [15]Chakraborty G,Chakraborty B.A rough-GA hybrid algorithm for rule extraction from large data[C].International Conference on Computational Intelligence for Measurement Systems and Applications,Boston,2004:85-90.
- [16]Wang Xiaodong,Zhang Haoran.Prediction of Chaotic time series using LS-SVM with automatic parameter[C].IEEE Sixth International Conference on Parallel and Distributed Computing,Applications and Technologies,Boston Embassy Suites,Boston,MA,2005:962-965.