液氢超导磁储能及其在能源互联网中的应用Liquid Hydrogen With SMES and Its Application in Energy Internet
沈郁;姚伟;方家琨;文劲宇;
摘要(Abstract):
随着可再生能源的开发利用规模不断扩大,储能技术将在未来能源互联网中占有重要地位。现有单一储能难以满足实际应用要求,因此介绍一种基于电力制氢和超导储能的大容量低成本复合储能技术—液氢超导混合储能技术(liquid hydrogen with superconducting magnetic energy storage,LIQHYSMES)。该技术利用电力制氢并液化储存,大大提升了装置容量,同时具有SMES的响应速度快的特点。此外,由于液氢储能部分和SMES共用制冷设备和冷媒,可以大大减少制冷成本。在分析了LIQHYSMES的工作原理和主要结构的基础上,对其进行经济技术性分析,举例分析了其在智能电网和未来能源互联网中的应用前景,仿真验证了其对不同时间尺度的不平衡功率均有较好的平抑效果,最后阐述了其规模应用亟待解决的关键技术。
关键词(KeyWords): 可再生能源;超导磁储能;液氢储能;复合储能;能源互联网
基金项目(Foundation): 国家自然科学基金项目(51577075);; 丹麦电网公司资助项目(12220)~~
作者(Author): 沈郁;姚伟;方家琨;文劲宇;
Email:
DOI: 10.13335/j.1000-3673.pst.2016.01.023
参考文献(References):
- [1]董朝阳,赵俊华,文福栓,等.从智能电网到能源互联网:基本概念与研究框架[J].电力系统自动化,2014,38(15):1-11.Dong Zhaoyang,Zhao Junhua,Wen fushuan,et al.From smart grid to energy internet:basic concept and research framework[J].Automation of Electric Power Systems,2014,38(15):1-11(in Chinese).
- [2]Rifkin J.The third industrial revolution:how lateral power is transforming energy,the economy,and the world[M].New York:Palgrave Macmillan,2011:27-68.
- [3]田世明,栾文鹏,张东霞,等.能源互联网技术形态与关键技术[J].中国电机工程学报,2015,35(14):3482-3494.Tian Shiming,Luan Wenpeng,Zhang Dongxia,et al.Technical forms and key technologies on energy internet[J].Proceedings of the CSEE,2015,35(14):3482-3494(in Chinese).
- [4]Tan X,Li Q,Wang H.Advances and trends of energy storage technology in microgrid[J].International Journal of Electrical Power&Energy Systems,2013,44(1):179-191.
- [5]查亚兵,张涛,黄卓,等.能源互联网关键技术分析[J].中国科学:信息科学,2014,44(6):702-713.Zha Yabing,Zhang Tao,Huang Zhuo,et al.Analysis of energy internet key technologies[J].Scientia Sinica Informationis,2014,44(6):702-713(in Chinese).
- [6]程时杰,李刚,孙海顺,等.储能技术在电气工程领域中的应用与展望[J].电网与清洁能源,2009,25(2):1-8.Cheng Shijie,Li Gang,Sun Haishun,et al.Application and prospect of energy storage in electrical engineering[J].Power System and Clean Energy,2009,25(2):1-8(in Chinese).
- [7]REN21 P S.Renewables 2015 global status report[R].Paris:REN21Secretariat,2015.
- [8]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化,2003,27(8):84-89.Lei Yazhou.Studies on wind farm integration into power system[J].Automation of Electric Power Systems,2003,27(8):84-89(in Chinese).
- [9]刘世林,文劲宇,孙海顺,等.风电并网中的储能技术研究进展[J].电力系统保护与控制,2013,41(23):145-153.Liu Shilin,Wen Jinyu,Sun Haishun,et al.Progress on applications of energy storage technology in wind power integrated to the grid[J].Power System Protection and Control,2013,41(23):145-153(in Chinese).
- [10]刘巨,姚伟,文劲宇,等.一种基于储能技术的风电场虚拟惯量补偿策略[J].中国电机工程学报,2015,35(7):1596-1605.Liu Ju,Yao Wei,Wen Jinyu,et al.A wind farm virtual inertia compensation strategy based on energy storage system[J].Proceedings of the CSEE,2015,35(7):1596-1605(in Chinese).
- [11]方家琨,苗璐,文劲宇,等.含风电-SMES的电力系统暂态稳定概率评估[J].电力系统保护与控制,2013,41(1):176-182.Fang Jiakun,Miao Lu,Wen Jinyu,et al.Transient stability probability evaluation of power system incorporating with wind farm and SMES[J].Power System Protection and Control,2013,41(1):176-182(in Chinese).
- [12]程时杰,余文辉,文劲宇,等.储能技术及其在电力系统稳定控制中的应用[J].电网技术,2007,31(20):97-108.Cheng Shijie,Yu Wenhui,Wen Jinyu,et al.Energy storage and its application in power system stability enhancement[J].Power System Technology,2007,31(20):97-108(in Chinese).
- [13]俞振华.储能产业研究白皮书2014[R].北京:中关村储能产业技术联盟,2014.
- [14]Molina M G,Argentinian N.Distributed energy storage systems for applications in future smart grids[C]//6th IEEE/PES Transmission and Distribution-Latin America Conference and Exposition(T&DLA).Montevideo,URUGUAY:IEEE,2012:1-7.
- [15]吴娟,龙新峰.太阳能热化学储能研究进展[J].化工进展,2014,33(12):3238-3245.Wu Juan,Long Xinfeng.Research progress of solar thermochemical energy storage[J].Chemical Industry and Engineering Progress,2014,33(12):3238-3245(in Chinese).
- [16]陈伟,石晶,任丽,等.微网中的多元复合储能技术[J].电力系统自动化,2010,34(1):112-115.Chen Wei,Shi Jing,Ren Li,et al.Composite usage of multi-type energy storage technologies in microgrid[J].Automation of Electric Power Systems,2010,34(1):112-115(in Chinese).
- [17]Díaz-González F,Sumper A,Gomis-Bellmunt O,et al.A review of energy storage technologies for wind power applications[J].Renewable and Sustainable Energy Reviews,2012,16(4):2154-2171.
- [18]刘霞,江全元.风光储混合系统的协调优化控制[J].电力系统自动化,2012,36(14):95-100.Liu Xia,Jiang Quanyuan.An optimal coordination control of hybrid wind/photovoltaic/energy storage system[J].Automation of Electric Power Systems,2012,36(14):95-100(in Chinese).
- [19]Khaligh A,Li Z.Battery,ultracapacitor,fuel cell,and hybrid energy storage systems for electric,hybrid electric,fuel cell,and plug-in hybrid electric vehicles:state of the art[J].IEEE Transactions on Vehicular Technology,2010,59(6):2806-2814.
- [20]田崇翼,张承慧,李珂,等.含压缩空气储能的微网复合储能技术及其成本分析[J].电力系统自动化,2015,39(10):36-41.Tian Chongyi,Zhang Chenghui,Li Ke,et al.Composite energy storage technology with compressed air energy storage in microgrid and its cost analysis[J].Automation of Electric Power Systems,2015,39(10):36-41(in Chinese).
- [21]王铁成,于海芳,朱春波.混合动力汽车复合储能技术[J].电力电子技术,2008,42(10):52-54.Wang Tiecheng,Yu Haifang,Zhu Chunbo.Hybrid energy sources for hybrid electric vehicle propulsion[J].Power Electronics,2008,42(10):52-54(in Chinese).
- [22]Sander M,Gehring R,Neumann H,et al.LIQHYSMES storage unithybrid energy storage concept combining liquefied hydrogen with superconducting magnetic energy storage[J].International Journal of Hydrogen Energy,2012,37(19):14300-14306.
- [23]唐跃进,任丽,石晶.超导电力基础[M].北京:中国电力出版社,2012:6-8.
- [24]方家琨,文劲宇,王少荣,等.移动式直接冷却高温超导磁储能系统试验研究[J].中国电机工程学报,2011,31(33):169-174.Fang Jiakun,Wen Jinyu,Wang Shaorong,et al.Development and test of moveable conduction-cooled high-temperature superconducting magnetic energy storage system[J].Proceedings of the CSEE,2011,31(33):169-174(in Chinese).
- [25]文劲宇,方家琨,唐跃进,等.移动式直接冷却高温超导磁储能装置:201010617819.4[P].2010-12-31.
- [26]Fang J,Wen J,Wang S,et al.Laboratory and field tests of movable conduction-cooled high-temperature SMES for power system stability enhancement[J].IEEE Transactions on Applied Superconductivity,2013,23(4):5701607.
- [27]Chen H,Cong T N,Yang W,et al.Progress in electrical energy storage system:a critical review[J].Progress in Natural Science,2009,19(3):291-312.
- [28]许炜,陶占良,陈军.储氢研究进展[J].化学进展,2006,18(2):200-210.Xu Wei,Tao Zhanliang,Chen Jun.Progress of research on hydrogen storage[J].Progress in Chemistry,2006,18(2):200-210(in Chinese).
- [29]吴川,张华民,衣宝廉.化学制氢技术研究进展[J].化学进展,2005,17(3):423-429.Wu Chuan,Zhang Huamin,Yi Baolian.Recent advances in hydrogen generation with chemical methods[J].Progress in Chemistry,2005,17(3):423-429(in Chinese).
- [30]Hirabayashi H,Makida Y,Shintomi T,et al.Feasibility of hydrogen cooled superconducting magnets[J].IEEE Transactions on Applied Superconductivity,2006,16(2):1435-1438.
- [31]Hirabayashi H,Makida Y,Nomura S,et al.Liquid hydrogen cooled superconducting magnet and energy storage[J].IEEE Transactions on Applied Superconductivity,2008,18(2):766-769.
- [32]Sander M,Gehring R.LIQHYSMES-a novel energy storage concept for variable renewable energy sources using hydrogen and SMES[J].IEEE Transactions on Applied Superconductivity,2011,21(3):1362-1366.
- [33]Sander M,Gehring R,Neumann H,et al.LIQHYSMES-a 48 GJ toroidal Mg B2-SMES for buffering minute and second fluctuations[J].IEEE Transactions on Applied Superconductivity,2013,23(3):5700505.
- [34]Sander M,Brighenti F,Gehring R,et al.LIQHYSMES-liquid H2 and SMES for renewable energy applications[J].International Journal of Hydrogen Energy,2014,39(23):12007-12017.
- [35]Durand J,Duarte M J,Clerens P,et al.Joint EASE/EERA recommendations for a European energy storage technology development roadmap towards 2030[R].Brussels:EASE/EERA,2013.
- [36]Dimitrov I K,Zhang X,Solovyov V F,et al.Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and Mg B2 superconductors[J].IEEE Transactions on Applied Superconductivity,2015,25(5):1-8.
- [37]Ren L,Xu Y,Liu H,et al.The experimental research and analysis of a HTS SMES hybrid magnet[J].IEEE Transactions on Applied Superconductivity,2015,25(3):1-5.
- [38]Steward D,Saur G,Penev M,et al.Lifecycle cost analysis of hydrogen versus other technologies for electrical energy storage[R].Golden,Colorado,US:National Renewable Energy Laboratory(NREL),2009.
- [39]Sander M,Neumann H.LIQHYSMES-size,loss and cost considerations for the SMES-a conceptual analysis[J].Superconductor Science and Technology,2011,24(10):105008.
- [40]Nakayama T,Yagai T,Tsuda M,et al.Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen[J].IEEE Transactions on Applied Superconductivity,2009,19(3):2062-2065.
- [41]曹军威,孟坤,王继业,等.能源互联网与能源路由器[J].中国科学:信息科学,2014,44(6):714-727.Cao Junwei,Meng Kun,Wang Jiye,et al.An energy internet and energy routers[J].Scientia Sinica Informationis,2014,44(6):714-727(in Chinese).
- [42]余贻鑫,秦超.智能电网基本理念阐释[J].中国科学:信息科学,2014,44(6):1674-7267.Yu Yixin,Qin Chao.Expatiation on the basic ideas of smart grid[J].Scientia Sinica Informationis,2014,44(6):1674-7267(in Chinese).
- [43]Ball M,Wietschel M,Rentz O.Integration of a hydrogen economy into the German energy system:an optimising modelling approach[J].International Journal of Hydrogen Energy,2007,32(10):1355-1368.
- [44]Niaz S,Manzoor T,Pandith A H.Hydrogen storage:materials,methods and perspectives[J].Renewable and Sustainable Energy Reviews,2015(50):457-469.
- [45]Krasae-in S,Stang J H,Neksa P.Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J].International Journal of Hydrogen Energy,2010,35(10):4524-4533.
- [46]Lowesmith B J,Hankinson G,Chynoweth S.Safety issues of the liquefaction storage and transportation of liquid hydrogen:an analysis of incidents and HAZIDS[J].International Journal of Hydrogen Energy,2014,39(35):20516-20521.