基于加权系数动态修正的短期风电功率组合预测方法Short-Term Wind Power Combination Forecasting Method Based on Dynamic Coefficient Updating
王铮;Rui Pestana;冯双磊;申洪;Luis Rosa;
摘要(Abstract):
风电功率预测是解决大规模风电并网问题的有效手段之一,预测精度越高,越有利于提高电网运行的安全性和经济性。为了提高风电功率短期预测精度,通过组合预测方式弥补单一预测模型的局限性,针对各预测结果性能随预测时间尺度变化的问题,提出了不同时间断面差异化的组合预测方法,并根据风电功率的波动特性,恰当引入天气变化的持续信息,优化了15 min~4 h预测时间尺度下的预测精度。同时,针对各集合成员每日更新结果,通过在线建模方式,动态修正各集合单元组合权值,提高预测模型的适应性。实际算例表明,所提方法能够得到风电功率预测结果,组合系数变化性质符合实际原理,与目前常用的组合预测方法相比,预测精度更优。
关键词(KeyWords): 风力发电;风电功率预测;功率波动特性;集合预测;动态组合预测
基金项目(Foundation): 国家重点基础研究发展计划项目(973项目)(2016YFB0900502);; 国家自然科学基金项目(51477156);; 国家电网公司科技项目(NY7116021)~~
作者(Author): 王铮;Rui Pestana;冯双磊;申洪;Luis Rosa;
Email:
DOI: 10.13335/j.1000-3673.pst.2016.0953
参考文献(References):
- [1]中国风能协会.2015年中国风电装机容量统计[R].北京:中国风能协会,2016.
- [2]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81.Chi Yongning,Liu Yanhua,Wang Weisheng,et al.Study on impact of wind power integration on power system[J].Power System Technology,2007,31(3):77-81(in Chinese).
- [3]迟永宁,李群英,李琰,等.大规模风电并网引起的电力系统运行与稳定问题及对策[J].电力设备,2008,9(11):16-19.Chi Yongning,Li Qunying,Li Yan,et al.Power system operation and stability problems caused by integration of large-scale wind power and correspond solution[J].Electric Equipment,2008,9(11):16-19(in Chinese).
- [4]王铮,刘纯,冯双磊,等.基于非参数回归的风电场理论功率计算方法[J].电网技术,2015,39(8):2148-2153.Wang Zheng,Liu Chun,Feng Shuanglei,et al.The wind farm theoretical power calculation method research based on nonparameter regression[J].Power System Technology,2015,39(8):2148-2153(in Chinese).
- [5]李湃,管晓宏,吴江,等.基于天气分类的风电场群总体出力特性分析[J].电网技术,2015,39(7):1866-1872Li Pai,Guan Xiaohong,Wu Jiang,et al.Analyzing characteristics of aggregated wind power generation based on weather regime classification[J].Power System Technology,2015,39(7):1866-1872(in Chinese).
- [6]王彩霞,鲁宗相.风电功率预测信息在日前机组组合中的应用[J].电力系统自动化,2011,35(7):13-18.Wang Caixia,Lu Zongxiang.Unit commitment based on wind power forecast[J].Automation of Electric Power Systems,2011,35(7):13-17(in Chinese).
- [7]高阳,张碧玲,毛京丽,等.基于机器学习的自适应光伏超短期出力预测模型[J].电网技术,2015,39(2):307-311.Gao Yang,Zhang Biling,Mao Jingli,et al.Machine learning-based adaptive very-short-term forecast model for photovoltaic power[J].Power System Technology,2015,39(2):307-311(in Chinese).
- [8]胡亚伟,王筱,晁勤,等.采用横纵向误差平移插值修正的风电预测精度改善方法[J].电网技术,2015,39(10):2758-2765(in Chinese).Hu Yawei,Wang Xiao,Chao Qin,et al.A forecasting accuracy improvement method for wind power based on phase and level errors translating and interpolating correction[J].Power System Technology,2015,39(10):2758-2765(in Chinese).
- [9]梁沛,卢继平,钟璐,等.非迭代与分时段最优的风电功率短期预测[J].电网技术,2015,39(10):2766-2771.Liang Pei,Lu Jiping,Zhong Lu,et al.Short-term wind power forecasting based on non-iterative algorithm and divided period optimization[J].Power System Technology,2015,39(10):2766-2771(in Chinese).
- [10]王铮,王伟胜,刘纯,等.基于风过程方法的风电功率预测结果不确定性估计[J].电网技术,2013,37(1):242-247.Wang Zheng,Wang Weisheng,Liu Chun,et al.Wind power forecast results uncertainty estimation based on wind procedure method[J].2013,37(1):242-247(in Chinese).
- [11]REN.Statistical data in 2014[EB/OL].2014[2016-02-29].http://www.ren.pt/.
- [12]Haque A U,Nehrir M H,Mandal P.A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting[J].Power System,2014,29(4):1663-1672.
- [13]Nielsen H A,Nielsen T S,Madsen H,et al.Optimal combination of wind power forecasts[J].Wind Energy,2007,10(5):471-482.
- [14]Thordarson F O,Madsen M,Nielsen H A,et al.Conditional weighted combination of wind power forecast[J].Wind Energy,2010,13(8):751-763.
- [15]刘纯,范高锋,王伟胜,等.风电场输出功率的组合预测模型[J].电网技术,2009,33(13):74-79.Liu Chun,Fan Gaofeng,Wang Weisheng,et al.A combination forecasting model for wind farm output power[J].Power System Technology,2009,33(13):74-79(in Chinese).
- [16]陈宁,沙倩,汤奕,等.基于交叉熵理论的风电功率组合预测方法[J].中国电机工程学报,2012,32(4):29-34.Chen Ning,Sha Qian,Tang Yi,et al.A combination method for wind power predication based on cross entropy theory[J].Proceedings of CSEE,2012,32(4):29-34.
- [17]叶林,刘鹏.基于经验模态分解和支持向量机的短期风电功率组合预测模型[J].中国电机工程学报,2011,31(31):102-108.Ye Lin,Liu Peng.Combined model based on EMD-SVM for short-term wind power prediction[J].Proceedings of the CSEE,2011,31(31):102-108(in Chinese).
- [18]孟安波,陈育成.基于虚拟预测与小波包变换的风电功率组合预测[J].电力系统保护与控制,2014,42(3):71-76.Meng Anbo,Chen Yucheng.Wind power combination forecasting based on wavelet packet transform and virtual forecasting method[J].Power System Protection and Control,2014,42(3):71-76(in Chinese).
- [19]叶晨.风电功率组合预测研究[D].北京:华北电力大学,2010.
- [20]杨茂,贾云彭,钱为,等.基于动态权重的风电功率组合预测方法研究[J].东北电力大学学报,2013,33(1/2):131-136.Yang Mao,Jia Yunpeng,Qian Wei,et al.A combination method research for wind power predication based on dynamic weight[J].Journal of Northeast Dianli University,2013,33(1/2):131-136(in Chinese).
- [21]王丽婕,冬雷,胡国飞,等.基于多嵌入维数的风力发电功率组合预测模型[J].控制与决策,2010,25(4):577-586.Wang Lijie,Dong Lei,Hu Guofei,et al.Combined prediction of wind power generation in multi-dimension embedding phase space[J].2010,25(4):577-586(in Chinese).
- [22]薛禹胜,郁琛,赵俊华.关于短期及超短期风电功率预测的评述[J].电力系统自动化.2015,39(6):1-11.Xue Yusheng,Yu Chen,Zhao Junhua,et al.A review on short term and ultra-short term wind power prediction[J].Automation of Electric Power Systems,2015,39(6):1-11(in Chinese).
- [23]谷兴凯,范高锋,王晓蓉,等.风电功率预测技术综述[J].电网技术,2007,31(增刊2):335-338.Gu Xingkai,Fan Gaofeng,Wang Xiaorong,et al.Summarization of wind power prediction technology[J].Power System Technology,2007,31(S2):335-338(in Chinese).
- [24]Pinson P.Estimation of the uncertainty in wind power forecasting[D].Paris:école nationale supérieure des mines,2006.
- [25]汪荣鑫.数理统计[M].西安:西安交通大学出版社,2005:177-178.