基于谱图理论的居民用户非侵入式负荷分解Non-Intrusive Residential Load Monitor Based on Spectral Graph Theory
彭显刚;郑凯;林哲昊;朱俊超;李壮茂;
摘要(Abstract):
针对现有居民用户非侵入式负荷分解需要高频采集数据或大量训练样本的问题,提出了一种基于谱图理论的非侵入式负荷分解方法。首先,以用户总负荷采样信号的相邻采样点差值来建立图结构,同时通过对用电设备信号采样点差值的分类来定义用电设备的图信号;然后,通过图拉普拉斯变换得到的图信号全局平滑度函数来实现用电设备图信号未知部分的重构。在用电设备时序信号的重构过程中采用了模糊规整方法来解决采样信号平滑性所导致的重构图信号数值的非标准化问题;对重构的用电设备图信号中相邻非零值间所对应的同时段负荷时序信号值赋以该用电设备的对应状态数据,从而实现用电设备时序信号的重构。最后采用AMPds数据集进行了仿真实验,结果表明所提方法有效且实用,能够在较低采样频率和先验信息较少的条件下实现较高精度的负荷分解。
关键词(KeyWords): 非侵入式负荷分解;谱图理论;图拉普拉斯变换;信号恢复
基金项目(Foundation):
作者(Author): 彭显刚;郑凯;林哲昊;朱俊超;李壮茂;
Email:
DOI: 10.13335/j.1000-3673.pst.2017.2301
参考文献(References):
- [1]余贻鑫,刘博,栾文鹏.非侵入式居民电力负荷监测与分解技术[J].南方电网技术,2013,7(4):1-5.Yu Yixin,Liu Bo,Luan Wenpeng.Non invasive resident power load monitoring and decomposition technology[J].Southern Power System Technology,2013,7(4):1-5(in Chinese).
- [2]程祥,李林芝,吴浩,等.非侵入式负荷监测与分解研究综述[J].电网技术,2016,40(10):3108-3117.Cheng Xiang,Li Linzhi,Wu Hao,et al.A survey of the research on non-intrusive load monitoring and disaggregation[J].Power System Technology,2016,40(10):3108-3117(in Chinese).
- [3]Liu Y,Chen M.A review of nonintrusive load monitoring and its application in commercial building[C]//Cyber Technology in Automation,Control,and Intelligent Systems(CYBER),2014 IEEE 4th Annual International Conference on.Hong Kong:IEEE,2014:623-629.
- [4]Rahimpour A,Qi H,Fugate D,et al.Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint[J].IEEE Transactions on Power Systems,2017,32(6):4430-4441.
- [5]孙毅,崔灿,陆俊,等.基于差量特征提取与模糊聚类的非侵入式负荷监测方法[J].电力系统自动化,2017,41(4):86-91.Sun Yi,Cui Can,Lu Jun,et al.A non intrusive load monitoring method based on differential feature extraction and fuzzy clustering[J].Automation of Electric Power Systems,2017,41(4):86-91(in Chinese).
- [6]祁兵,程媛,武昕.基于Fisher有监督判别的非侵入式居民负荷辨识方法[J].电网技术,2016,40(8):2484-2490.Qi Bing,Cheng Yuan,Wu Xin.A non intrusive method of residential load identification based on Fisher supervised discrimination[J].Power System Technology,2016,40(8):2484-2490(in Chinese).
- [7]Majumdar A,Ward R.Robust dictionary learning:Application to signal disaggregation[C]//IEEE International Conference on Acoustics,Speech and Signal Processing.Shanghai,China:IEEE,2016:2469-2473.
- [8]孙毅,崔灿,陆俊,等.基于遗传优化的非侵入式家居负荷分解方法[J].电网技术,2016,40(12):3912-3917.Sun Yi,Cui Can,Lu Jun,et al.A non-intrusive household load monitoring method based on genetic optimization[J].Power System Technology,2016,40(12):3912-3917(in Chinese).
- [9]Basu K,Debusschere V,Bacha S,et al.A generic data driven approach for low sampling load disaggregation[J].Sustainable Energy Grids and Networks,2017,9(1):118-127.
- [10]Figueiredo M,Ribeiro B,Almeida A D.Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home[J].IEEE Transactions on Instrumentation&Measurement,2014,63(2):364-373.
- [11]Spielman D A.Spectral graph theory and its applications[C]//IEEE Symposium on Foundations of Computer Science.IEEE Computer Society Providence,RI,USA:IEEE,2007:29-38.
- [12]杨汉键.基于图信号处理的滚动轴承故障特征提取方法研究[D].长沙:湖南大学,2016.
- [13]Ono S,Yamada I,Kumazawa I.Total generalized variation for graph signals[C]//IEEE International Conference on Acoustics,Speech and Signal Processing.Brisbane,QLD,Australia:IEEE,2015:5456-5460.
- [14]Chen S,Sandryhaila A,Moura J M F,et al.Signal recovery on graphs:variation minimization[J].IEEE Transactions on Signal Processing,2014,63(17):4609-4624.
- [15]Chen S,Sandryhaila A,Lederman G,et al.Signal inpainting on graphs via total variation minimization[C]//IEEE International Conference on Acoustics,Speech and Signal Processing.Florence,Italy:IEEE,2014:8267-8271.
- [16]Makonin S,Popowich F,Bartram L,et al.AMPds:A public dataset for load disaggregation and eco-feedback research[C]//Electrical Power&Energy Conference on.Halifax,NS,Canada:IEEE,2014:1-6.
- [17]陈思运,高峰,刘烃,等.基于因子隐马尔可夫模型的负荷分解方法及灵敏度分析[J].电力系统自动化,2016,40(21):128-136.Chen Siyun,Gao Feng,Liu Ting,et al.Load decomposition method and sensitivity analysis based on factor hidden Markov model[J].Automation of Electric Power Systems,2016,40(21):128-136(in Chinese).