基于粗糙集理论的神经网络预测算法及其在短期负荷预测中的应用A Rough Set-Based Neural Network Load Forecasting Algorithm and Its Application in Short-Term Load Forecasting
庞清乐;
摘要(Abstract):
神经网络具有万能逼近能力,在模式识别、模型预测和数据挖掘等领域得到了广泛应用。但是,神经网络在被逼近非线性函数峰值处的误差较大,当峰值两侧的斜率差较大时误差更大。提出了基于粗糙集理论的改进神经网络算法,并将其应用于短期负荷预测。将当前时间间隔负荷、前一时间间隔负荷、当前时间间隔和前一时间间隔的负荷差和当前时间分别作为神经网络预测模型的输入,将下一时间间隔的预测负荷作为神经网络的输出,利用粗糙集理论对神经网络预测模型输出的预测负荷进行补偿,使预测精度更高。仿真结果表明,该方法能显著提高函数的预测精度。
关键词(KeyWords): 负荷预测;神经网络;粗糙集理论
基金项目(Foundation): 国家自然科学基金资助项目(50777040);; 中国博士后科学基金资助项目(20090461204);; 山东省博士后创新项目专项资金资助项目(200903066);; 山东省高等学校科技计划项目(J09LG09)。~~
作者(Author): 庞清乐;
Email:
DOI: 10.13335/j.1000-3673.pst.2010.12.027
参考文献(References):
- [1]王建军,徐宗本.多元多项式函数的三层先向神经网络逼近方法[J].计算机学报,2009,32(12):2482-2488.Wang Jianjun,Xu Zongben.Approximation method of multivariate polynomials by feedforward neural networks[J].Chinese Journal of Computers,2009,32(12):2482-2488(in Chinese).
- [2]Leung H F,Lam H K,Ling S H,et al.Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J].IEEE Trans on Neural Networks,2003,14(1):79-88.
- [3]Tsai J T,Chou J H,Liu T K.Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm[J].IEEE Trans on Neural Networks,2006,17(1):69-80.
- [4]邓万宇,郑庆华,陈琳,等.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287.Deng Wanyu,Zheng Qinghua,Chen Lin,et al.Research on extreme learning of neural networks[J].Chinese Journal of Computers,2010,33(2):279-287(in Chinese).
- [5]王伟,吴敏,雷琪,等.炼焦生产过程综合生产指标的改进神经网络预测方法[J].控制理论与应用,2009,26(12):1419-1424.Wang Wei,Wu Min,Lei Qi,et al.An improved neural network method for the prediction of comprehensive production indices in coking process[J].Control Theory&Applications,2009,26(12):1419-1424(in Chinese).
- [6]张静,宋锐,郁文贤.雷达目标识别中的BP神经网络算法改进及应用[J].系统工程与电子技术,2005,27(4):582-585.Zhang Jing,Song Rui,Yu Wenxian.Improvements and applications of BP neural network algorithm in radar target recognition[J].Systems Engineering and Electronics,2005,27(4):582-585(in Chinese).
- [7]Pawlak Z.Rough sets[J].International of Information and Computer Sciences,1982,11(5):341-345.
- [8]Swiniarski R W,Hargis L.Rough sets as a front end of neural-networks texture classifiers[J].Neurocomputing,2001,36(1):85-102.
- [9]卫志农,谢铁明,孙国强.基于超短期负荷预测和混合量测的线性动态状态估计[J].中国电机工程学报,2010,30(1):47-51.Wei Zhinong,Xie Tieming,Sun Guoqiang.Linear dynamic state estimation based on mixed measurements using ultra-short term load prediction[J].Proceedings of the CSEE,2010,30(1):47-51(in Chinese).
- [10]刘旭,罗滇生,姚建刚,等.基于负荷分解和实时气象因素的短期负荷预测[J].电网技术,2009,33(12):94-100.Liu Xu,Luo Diansheng,Yao Jiangang,et al.Short-term load forecasting based on load decomposition and hourly weather factors[J].Power System Technology,2009,33(12):94-100(in Chinese).
- [11]Papalexopoulos A D,Hesterberg T C.A regression-based approach to short-term load forecasting[J].IEEE Trans on Power Systems,1990,5(4):1535-1547.
- [12]毛李帆,江岳春,姚建刚,等.采用正交信号修正法与偏最小二乘回归的中长期负荷预测[J].中国电机工程学报,2009,29(16):82-88.Mao Lifan,Jiang Yuchun,Yao Jiangang,et al.Medium and long term forecasting based on orthogonal signal correction and partial least-squares regression[J].Proceedings of the CSEE,2009,29(16):82-88(in Chinese).
- [13]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(7):1-11.Kang Chongqing,Xia Qing,Zhang Boming.Review of power system load forecasting and development[J].Automation of Electric Power Systems,2004,28(7):1-11(in Chinese).
- [14]Methaprayoon K,Wei J L,Rasmiddatta S,et al.Multistage artificial neural network short-term load forecasting engine with front-end weather forecast[J].IEEE Trans on Industry Applications,2007,43(6):1410-1416.
- [15]尤勇,盛万兴,王孙安.基于人工免疫网络的短期负荷预测模型[J].中国电机工程学报,2003,23(3),26-29,98.You Yong,Sheng Wanxing,Wang Sun’an.Short-term load forecasting using artificial immune network[J].Proceedings of the CSEE,2003,23(3):26-29,98(in Chinese).
- [16]周湶,李健,孙才新,等.基于粗糙集和元胞自动机的配电网空间负荷预测[J].中国电机工程学报,2008,28(25):68-73.Zhou Quan,Li Jian,Sun Caixin,et al.Spatial load forecasting for distribution networks based on rough sets and cellular automata[J].Proceedings of the CSEE,2008,28(25):68-73(in Chinese).
- [17]罗玮,严正.基于广义学习矢量量化和支持向量机的混合短期负荷预测方法[J].电网技术,2008,32(13):62-68.Luo Wei,Yan Zheng.A hybrid approach of short-term load forecasting based on generalized learning vector quantity and support machine vector[J].Power System Technology,2008,32(13):62-68(in Chinese).
- [18]Bashir Z A,El-Hawary M E.Applying wavelets to short-term load forecasting using PSO-based neural networks[J].IEEE Trans on Power Systems,2009,24(1):20-27.
- [19]Gwo Ching L,Ta-Peng T.Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting[J].IEEE Trans on Evolutionary Computation,2006,10(3):330-340.
- [20]Yun Z,Quan Z,Caixin S L,et al.RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment[J].IEEE Trans on Power Systems,2008,23(3):853-858.
- [21]谢宏,程浩忠,张国立,等.基于粗糙集理论建立短期电力负荷神经网络预测模型[J].中国电机工程学报,2003,23(11):1-4.Xie Hong,Cheng Haozhong,Zhang Guoli,et al.Applying rough set theory to establish artificial neural networks for short term load forecasting[J].Proceedings of the CSEE,2003,23(11):1-4(in Chinese).
- [22]牛东晓,陈志业,邢棉,等.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报,2002,22(1):29-32.Niu Dongxiao,Chen Zhiye,Xing Mian,et al.Combined optimum gray neural network model of seasonal power load forecasting with the double trends[J].Proceedings of the CSEE,2002,22(1):29-32(in Chinese).
- [23]王志勇,郭创新,曹一家.基于模糊粗糙集和神经网络的短期负荷预测方法[J].中国电机工程学报,2005,25(19):7-11.Wang Zhiyong,Guo Chuangxin,Cao Yijia.A method for short term load forecasting integrating fuzzy-rough set with artificial neural network[J].Proceedings of the CSEE,2005,25(19):7-11(in Chinese).
- [24]孙雅明,张智晟.相空间重构和混沌神经网络融合的短期负荷预测研究[J].中国电机工程学报,2004,24(1):44-48.Sun Yaming,Zhang Zhisheng.A new model of STLF based on the fusion of PSRT and chaotic neural networks[J].Proceedings of the CSEE,2004,24(1):44-48(in Chinese).
- [25]邰能灵,侯志俭.小波模糊神经网络在电力系统短期负荷预测中的应用[J].中国电机工程学报,2004,24(1):24-29.Tai Nengling,Hou Zhijian.New short-term load forecasting principle with the wavelet transform fuzzy neural network for the power systems[J].Proceedings of the CSEE,2004,24(1):24-29(in Chinese).
- [26]师彪,李郁侠,于新花,等.基于改进粒子群–径向基神经网络模型的短期电力负荷预测[J].电网技术,2009,33(17):180-184.Shi Biao,Li Yuxia,Yu Xinhua,et al.Short-term load forecasting based on modified particle swarm optimization and radial basis function neural network model[J].Power System Technology,2009,33(17):180-184(in Chinese).
- [27]陈刚,周杰,张雪君,等.基于BP与RBF级联神经网络的日负荷预测[J].电网技术,2009,33(12):101-105.Chen Gang,Zhou Jie,Zhang Xuejun,et al.A daily load forecasting method based on cascaded back propagation and radial basis function neural networks[J].Power System Technology,2009,33(12):101-105(in Chinese).