基于混沌-RBF神经网络的光伏发电功率超短期预测模型Ultra-Short Term Prediction Model of Photovoltaic Output Power Based on Chaos-RBF Neural Network
王育飞;付玉超;孙路;薛花;
摘要(Abstract):
光伏出力时间序列的随机性和波动性使得光伏出力预测难以达到理想的精度,而提高预测精度是降低光伏并网不利影响的前提。因此,在揭示光伏出力波动本质的基础上,提出了混沌-径向基函数(radial basis function,RBF)预测模型。首先,应用小波去噪处理后光伏发电功率实测数据,基于C-C法重构系统相空间,运用相图法和改进最大李雅普诺夫(Lyapunov)指数法,对输出功率进行非线性动力学分析,确定光伏出力具有混沌特性;然后,分析光伏出力相空间轨迹局部变化的规律性,采用RBF神经网络对系统轨迹进行拟合,建立基于混沌-RBF神经网络的光伏发电功率超短期预测模型;最后,选取去噪后的实测数据对所建模型进行训练和预测,验证模型在不同天气状况下的预测效果。结果表明,所建模型对晴朗、多云和阴天等天气状况都有较好的预测精度,显示出良好的预测性能。
关键词(KeyWords): 光伏发电;功率波动;混沌特性;RBF神经网络;超短期预测
基金项目(Foundation): 国家自然科学基金项目(51407114);; 上海市自然科学基金项目(15ZR1418000)~~
作者(Author): 王育飞;付玉超;孙路;薛花;
Email:
DOI: 10.13335/j.1000-3673.pst.2017.2878
参考文献(References):
- [1]赵书强,王明雨,胡永强,等.基于不确定理论的光伏出力预测研究[J].电工技术学报,2015,30(16):213-220.Zhao Shuqiang,Wang Mingyu,Hu Yongqiang,et al.Research on the prediction of PV output based on uncertainty theory[J].Transactions of China Electrotechnical Society,2015,30(16):213-220(in Chinese).
- [2]朱红路,李旭,姚建曦,等.基于小波分析与神经网络的光伏电站功率预测方法[J].太阳能学报,2015,36(11):2725-2730.Zhu Honglu,Li Xu,Yao Jianxi,et al.The power prediction method for photovoltaic power station based on wavelet analysis and neural networks[J].Acta Energiae Solaris Sinica,2015,36(11):2725-2730(in Chinese).
- [3]Liu J,Fang W L,Zhang X D,et al.An improved photovoltaic power forecasting model with the assistance of aerosol index data[J].IEEE Transactions on Sustainable Energy,2015,6(2):434-442.
- [4]张程熠,唐雅洁,李永杰,等.适用于小样本的神经网络光伏预测方法[J].电力自动化设备,2017,37(1):101-106.Zhang Chengyi,Tang Yajie,Li Yongjie,et al.Photovoltaic power forecast based on neural network with a small number of samples[J].Electric Power Automation Equipment,2017,37(1):101-106(in Chinese).
- [5]孙骁强,刘鑫,程松,等.光伏逆变器参与西北送端大电网快速频率响应能力实测分析[J].电网技术,2017,41(9):2792-2798.Sun Xiaoqiang,Liu Xin,Cheng Song,et al.Actual measurement and analysis of fast frequency response capability of PV-inverters in northwest power grid[J].Power System Technology,2017,41(9):2792-2798.
- [6]蔡永翔,张璐,唐巍,等.考虑逆变器无功充裕性的含高比例户用光伏低压配电网电压控制策略[J].电网技术,2017,41(9):2799-2807.Cai Yongxiang,Zhang Lu,Tang Wei,et al.A voltage control strategy for LV distribution network with high proportion residential PVs considering reactive power adequacy of PV inverters[J].Power System Technology,2017,41(9):2799-2807.
- [7]Li J,Wang R,Zhang T,et al.Predicating photovoltaic power generation using an improved hybrid heuristic method[C]//2016 Sixth International Conference on Information Science and Technology(ICIST).Dalian,China:IEEE,2016:383-387.
- [8]Sun Y J,Wang F,Zhen Z,et al.Research on short-term module temperature prediction model based on BP neural network for photovoltaic power forecasting[C]//2015 IEEE Power and Energy Society General Meeting.Denver,American:IEEE,2015:1-5.
- [9]单英浩,付青,耿炫,等.基于改进BP-SVM-ELM与粒子化SOMLSF的微电网光伏发电组合预测方法[J].中国电机工程学报,2016,36(12):3334-3343.Shan Yinghao,Fu Qing,Geng Xuan,et al.Combined forecasting of photovoltaic power generation in microgrid based on the improved BP-SVM-ELM and SOM-LSF with particlization[J].Proceedings of the CSEE,2016,36(12):3334-3343(in Chinese).
- [10]茆美琴,龚文剑,张榴晨,等.基于EEMD-SVM方法的光伏电站短期出力预测[J].中国电机工程学报,2013,33(34):17-24.Mao Meiqin,Gong Wenjian,Zhang Liuchen,et al.Short-term photovoltaic generation forecasting based on EEMD-SVM combined method[J].Proceedings of the CSEE,2013,33(34):17-24(in Chinese).
- [11]罗钢,石东源,陈金富,等.风光发电功率时间序列模拟的MCMC方法[J].电网技术,2014,38(2):321-327.Luo Gang,Shi Dongyuan,Chen Jinfu,et al.A Markov chain Monte Carlo method for simulation of wind and solar power time series[J].Power System Technology,2014,38(2):321-327(in Chinese).
- [12]黄磊,舒杰,姜桂秀,等.基于多维时间序列局部支持向量回归的微网光伏发电预测[J].电力系统自动化,2014,38(5):19-24.Huang Lei,Shu Jie,Jiang Guixiu,et al.Photovoltaic generation forecast based on multidimensional time-series and local support vector regression in microgrids[J].Automation of Electric Power Systems,2014,38(5):19-24(in Chinese).
- [13]王昕,黄柯,郑益慧,等.基于萤火虫算法-广义回归神经网络的光伏发电功率组合预测[J].电网技术,2017,41(2):455-461.Wang Xin,Huang Ke,Zheng Yihui,et al.Combined PV power forecast based on firefly algorithm-generalized regression neural network[J].Power System Technology,2017,41(2):455-461(in Chinese).
- [14]姚美齐,蔡旭.大型光伏电站内网拓扑结构比较分析[J].电网技术,2017,41(5):1406-1411.Yao Meiqi,Cai Xu.Comparative analysis of different topologies for large PV plants[J].Power System Technology,2017,41(5):1406-1411.
- [15]Yone A,Senjyu T,Funabnshi T,et al.Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction[J].IEEE Transactions on Sustainable Energy,2013,4(2):527-533.
- [16]王飞,米增强,杨奇逊,等.基于神经网络与关联数据的光伏电站发电功率预测方法[J].太阳能学报,2012,33(7):1171-1177.Wang Fei,Mi Zengqing,Yang Qixun,et al.Power forecasting approach of PV plant based on ANN and relevant data[J].Acta Energiae Solaris Sinica,2012,33(7):1171-1177(in Chinese).
- [17]袁晓玲,施俊华,徐杰彦.计及天气类型指数的光伏发电短期出力预测[J].中国电机工程学报,2013,33(34):57-64.Yuan Xiaoling,Shi Junhua,Xu Jieyan.Short-term power forecasting for photovoltaic generation considering weather type index[J].Proceedings of the CSEE,2013,33(34):57-64(in Chinese).
- [18]赵唯嘉,张宁,康重庆,等.光伏发电出力的条件预测误差概率分布估计方法[J].电力系统自动化,2015,39(16):8-15.Zhao Weijia,Zhang Ning,Kang Chongqing,et al.A method of probabilistic distribution estimation of conditional forecast error for photovoltaic power generation[J].Automation of Electric Power Systems,2015,39(16):8-15(in Chinese).
- [19]Gotseff P,Cale J,Bagguc M,et al.Accurate power prediction of spatially distributed PV systems using localized irradiance measurements[C]//2014 PES General Meeting|Conference&Exposition.Marryland,American:IEEE,2014:1-5.
- [20]陈志宝,丁杰,周海,等.地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J].中国电机工程学报,2015,35(3):561-567.Chen Zhibao,Ding Jie,Zhou Hai,et al.A model of very short-term photovoltaic power forecasting based on ground-based cloud images and RBF neural network[J].Proceedings of the CSEE,2015,35(3):561-567(in Chinese).
- [21]赵峰,孙波,张承慧.基于多变量相空间重构和卡尔曼滤波的冷热电联供系统负荷预测方法[J].中国电机工程学报,2016,36(2):399-406.Zhao Feng,Sun Bo,Zhang Chenghui.Cooling,heating and electrical load forecasting method for CCHP system based on multivariate phase space reconstruction and Kalman filter[J].Proceedings of the CSEE,2016,36(2):399-406(in Chinese).
- [22]吕涛,唐巍,所丽.基于混沌相空间重构理论的风电场短期风速预测[J].电力系统保护与控制,2010,38(21):113-117.LüTao,Tang Wei,Suo Li.Prediction of short-term wind speed in wind farm based on chaotic phase space reconstruction theory[J].Power System Protection and Control,2010,38(21):113-117(in Chinese).
- [23]谷子,唐巍.电力短期负荷时间序列混沌相空间重构参数优选法[J].中国电机工程学报,2006,26(14):18-23.Gu Zi,Tang Wei.Parameter optimization of phase space reconstruction for short-term load time series[J].Proceedings of the CSEE,2006,26(14):18-23(in Chinese).