计及风光出力相关性的配电网多目标无功优化Multi-objective Reactive Power Optimization of Distribution Network Considering Output Correlation Between Wind Turbines and Photovoltaic Units
刘梦依;邱晓燕;张志荣;赵长枢;赵有林;张楷;
摘要(Abstract):
风电-光伏机组的大量接入对传统的无功优化模型提出了新的挑战。提出了计及风光出力相关性的配电网多目标无功优化模型,采用粒子群优化神经网络(particle swarm algorithm-BP neural network,PSO-BP)依据过去天气预报和风电出力的历史数据训练得到风电预测出力曲线,利用综合场景概率法生成光伏出力曲线。用斯皮尔曼相关系数将风光之间的出力相关性量化,再考虑风机和光伏机组共同参与无功优化。采用多目标粒子群算法(multi-obj ective particle swarm optimization,MOPSO)求解模型,以改进的IEEE 33节点配电网系统作为仿真样本,求得兼顾网损和电压偏差的Pareto最优解集,从中选择最优方案。算例结果验证了风光出力相关性对无功优化的影响,以及分布式电源接入配电网能有效降低网损和提高节点电压。在实际运行中,各地区的风光出力均满足一定的自然规律,可以以斯皮尔曼相关系数大小为参考依据,实现分布式电源(distributed generation,DG)和静止无功补偿装置(static var compensator,SVC)的协同优化运行,为配电网的安全经济运行保驾护航。
关键词(KeyWords): 分布式电源;PSO-BP神经网络;相关性;多目标无功优化
基金项目(Foundation): 四川省科技厅重点研发项目(2017FZ0103)~~
作者(Author): 刘梦依;邱晓燕;张志荣;赵长枢;赵有林;张楷;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.1206
参考文献(References):
- [1]韦钢,吴伟力,胡丹云,等.分布式电源及其并网时对电网的影响[J].高电压技术,2007,33(1):36-40.Wei Gang,Wu Weili,Hu Weili,et al.Distributed generation and effects of its parallel operation on power system[J].High Voltage Engineering,2007,33(1):36-40(in Chinese).
- [2] 2018-2024年中国风力发电行业市场深度分析及投资前景预测报告[M].北京:智研咨询集团,2018.
- [3]张庭场,耿光飞.基于改进粒子群算法的中压配电网无功优化[J].电网技术,2012,36(2):158-162.Zhang Tingchang,Geng Guangfei.Reactive power optimization for medium voltage distribution network based on improved particle swarm optimization[J].Power System Technology,2012,36(2):158-162(in Chinese).
- [4] Azzam M,Mousa A A.Using genetic algorithm and TOPSIS technique for multiobjective reactive power compensation[J].Electric Power Systems Research,2010,80(6):675-681.
- [5] Sideratos G,Hatziargyriou N.Using radial basis neural networks to estimate wind power production[C]//IEEE Power Engineering Society General Meeting.Tampa,USA:IEEE,2007:1-7.
- [6] Dong Lei,Wang Lijie,Hu Shi,et al.Prediction of wind power generation based on chaotic phase space reconstruction models[C]//IEEE Power Electronics and Drive Systems 2007.Bangkok,Thailand:IEEE,2007:744-748.
- [7]张晓丹.风电功率预测误差不确定性建模研究[D].北京:北京交通大学,2016.
- [8]杨志凌,刘永前.应用粒子群优化算法的短期风电功率预测[J].电网技术,2011,35(5):159-164.Yang Zhiling,Liu Yongqian.Short-term wind power prediction with particle swarm optimization[J].Power System Technology,2011,35(5):159-164(in Chinese).
- [9]何禹清,彭建春,毛丽林,等.含多个风电机组的配电网无功优化[J].电力系统自动化,2010,34(19):37-41.He Yuqing,Peng Jianchun,Mao Lilin,et al.Reactive power optimization in distribution system with multiple wind power generators[J].Automation of Electric Power Systems,2010,34(19):37-41(in Chinese).
- [10]王玲玲,王昕,郑益慧,等.计及多个风电机组出力相关性的配电网无功优化[J].电网技术,2017,41(11):3463-3469.Wang Lingling,Wang Xin,Zheng Yihui,et al.Reactive power optimization of distribution network considering output correlation of multiple wind turbines[J].Power System Technology,2017,41(11):3463-3469(in Chinese).
- [11]郑能,丁晓群,管志成,等.考虑相关性的含风电的配电网无功优化[J].南方电网技术,2018,12(1):62-69.Zheng Neng,Ding Xiaoqun,Guan Zhicheng,et al.Reactive power optimization in distribution network with wind turbine generators considering the correlations[J].Southern Power System Technology,2018,12(1):62-69(in Chinese).
- [12]汪文达,崔雪,马兴,等.考虑多个风电机组接入配电网的多目标无功优化[J].电网技术,2015,39(7):1860-1865.Wang Wenda,Cui Xue,Ma Xin,et al.Multi-objective optimal reactive power flow of distribution network with multiple wind turbines[J].Power System Technology,2015,39(7):1860-1865(in Chinese).
- [13]李晓利,高金峰.用于配电网多目标无功优化的改进粒子群优化算法[J/OL].电力自动化设备,2019:1-6.[2019-01-06].https://doi.org/10.16081/j.issn.1006-6047.2019.01.016.Li Xiaoli, Gao Jinfeng. Improved particle swarm optimization algorithm for multi-objective reactive power of distribution network[J/OL].Electric Power Automation Equipment,2019:1-6.[2019-01-06]. https://doi.org/10.16081/j.issn.1006-6047.2019.01.016(in Chinese).
- [14]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generated power forecasting in wind farm[J].Proceedings of the CSEE,2005,25(11):1-5(in Chinese).
- [15]范宏,左路浩,张节潭,等.考虑光伏出力不确定性的输电网概率潮流计算[J].电力系统及其自动化学报,2017,29(11):111-116.Fan Hong,Zuo Luhao,Zhang Jietan,et al.Probability power flow calculation of transmission network considering uncertainty of photovoltaic output[J].Proceedings of the CSU-EPSA,2017,29(11):111-116(in Chinese).
- [16] Mckay M D,Beckman R J,Conover W J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics,1979,21(2):239-245.
- [17] Yu H,Chung C Y,Wong K P,et al.Probabilistic load flow evaluation with hybrid Latin hypercube sampling and cholesky decomposition[J].IEEE Transactions on Power Systems,2009,24(2):661-667.
- [18]刘梦依,邱晓燕,张楷,等.计及源-荷不确定性的高比例可再生能源系统协同优化运行[J].电力建设,2018,39(12):55-62.Liu Mengyi,Qiu Xiaoyan,Zhang Kai,et al.Coordination and optimization for power systems with high proportion of renewable energy considering uncertainty of generation and load[J].Electric Power Construction,2018,39(12):55-62(in Chinese).
- [19]郑能,丁晓群.基于场景法的配电网有功-无功协调优化[J/OL].电网技术,2019:1-14.[2019-01-06].https://doi.org/10.13335/j.1000-3673. pst.2018.1082.Zheng Neng,Ding Xiaoqun.Coordinated optimization of reactive power and reactive power in distribution network based on scenario method[J/OL].Power System Technology,2019:1-14.[2019-01-06].https://doi.org/10.13335/j.1000-3673.pst.2018.1082(in Chinese).
- [20]阮贺彬,高红均,刘俊勇,等.考虑DG无功支撑和开关重构的主动配电网分布鲁棒无功优化模型[J].中国电机工程学报,2019,39(3):685-695+948.Ruan Hebin,Gao Hongjun,Liu Junyong,et al.A distributionally robust reactive power optimization model for active distribution network considering reactive power support of DG and switcher configuration[J]. Proceedings of the CSEE, 2019, 39(3):685-695+948(in Chinese).
- [21]张晓东,王茜.多目标服务工作流混合粒子群调度算法[J].东南大学学报(自然科学版),2010,40(3):491-495.Zhang Xiadong,Wang Qian.Hybrid particle swarm optimization algorithm for multi-objective scheduling in service work flows[J].Journal of Southeast University(Natural science edition),2010,40(3):491-495(in Chinese).
- [22]李振坤,陈星莺,余昆,等.配电网重构的混合粒子群算法[J].中国电机工程学报,2008,28(31):35-41.Li Zhenkun,Chen Xingying,Yu Kun,et al.Hybrid particle swarm optimization for distribution network reconfiguration[J].Proceedings of the CSEE,2008,28(31):35-41(in Chinese).
- [23] Reliability Test System Task Force.The IEEE reliability test system-1996[J].IEEE Transactions on Power Systems,1999,14(3):1010-1020.
- [24]赵劲帅,邱晓燕,马菁曼,等.基于模糊聚类分析与模型识别的微电网多目标优化方法[J].电网技术,2016,40(8):2316-2323.Zhao Jinshuai,Qiu Xiaoyan,Ma Jingman,et al.Multi-objective optimization method of microgrid based on fuzzy clustering analysis and model recognition[J].Power System Technology,2016,40(8):2316-2323(in Chinese).
- [25]秦佳倩,马瑞.电-气耦合系统概率Pareto最大负荷裕度及灵敏度分析[J].电网技术,2019,43(1):58-65.Qin Jiaqian,Ma Rui.Probability Pareto maximum load margin and sensitivity analysis for electricity-gas coupling system[J]. Power System Technology,2019,43(1):58-65(in Chinese).