一种考虑最优状态动态恢复的风电持续调频策略Wind Power Sustained Frequency Regulation Strategy With Dynamic Optimized State Recovery Behavior
劳焕景;张黎;宋鹏程;赵彤;邹亮;
摘要(Abstract):
持续攀升的风电渗透水平为电力系统频率稳定控制带来了挑战。作为对策,虚拟惯性控制通常被补充到风机控制中以利用风机转子动能为电网调频服务。然而在吞吐转动惯量参与调频后风机风能捕获效率会因转子转速偏离最大功率跟踪状态而降低。为此,提出一种考虑最优状态动态恢复的风电持续调频策略。该策略采用变系数下垂控制来管理风机转动惯量:一方面,下垂系数变化上限阈值由风机存储的转动惯量决定,以确保风机转速收敛于稳定运行区间内;另一方面,将下垂系数与电网频率变化率耦合,随着电网频率渐近稳定而逐渐解除附加的风机惯性控制以恢复转子转速。此外,赋予风机直流环节频率响应能力并通过自适应积分控制来有序重建其额定电压。仿真结果表明,所提策略的动态恢复特性提高了持续调频下双馈风机的发电效率、转子转速运行裕度和其直流环节持续参与调频的能力,并能有效兼顾风机的惯性响应。
关键词(KeyWords): 动态恢复;发电效率;高风电渗透水平;持续调频;风能
基金项目(Foundation):
作者(Author): 劳焕景;张黎;宋鹏程;赵彤;邹亮;
Email:
DOI: 10.13335/j.1000-3673.pst.2020.0265a
参考文献(References):
- [1]Sorensen P.Power fluctuations from large wind farms[J].IEEETransactions on Power Systems,2007,22(3):958-965.
- [2]Jia Y.Powering China’s sustainable development with renewable energies:Current status and future trend[J].Electric Power Components and Systems,2015,43(8-10):1193-1204.
- [3]Howlader A M.A review of output power smoothing methods for wind energy conversion systems[J].Renewable and Sustainable Energy Reviews,2013(26):135-146.
- [4]Ni B,Sourkounis C.Energy yield and power fluctuation of different control methods for wind energy converters[C]//2010 IEEE Industry Applications Society Annual Meeting,Houston,TX,2010:1-7.
- [5]Li Y,Xu Z,Wong K P.Advanced control strategies of PMSG based wind turbines for system inertia support[J].IEEE Transactions on Power Systems,2017,32(4):3027-3037.
- [6]Shafiullah G.Potential challenges of integrating large-scale wind energy into the power grid-A review[J].Renewable and Sustainable Energy Reviews,2013(20):306-321.
- [7]Smith J C.Utility wind integration and operating impact state of the art[J].IEEE Transactions on Power Systems,2007,22(3):900-908.
- [8]Banakar H,Luo C,Ooi B T.Impacts of wind power minute-to-minute variations on power system operation[J].IEEE Transactions on Power Systems,2008,23(1):150-160.
- [9]胡泽春,夏睿,吴林林,等.考虑储能参与调频的风储联合运行优化策略[J].电网技术,2016,40(8):2251-2257.Hu Zechun,Xia Rui,Wu Linlin,et al.Joint operation optimization of wind-storage union with energy storage participating frequency regulation[J].Power System Technology,2016,40(8):2251-2257(in Chinese).
- [10]Miller N W,Shao M,Venataraman S.California ISO:frequency response study[Z].Altanta,GA,USA:GE Energy,Final draft,2011.
- [11]张旭,陈云龙,岳帅,等.风电参与电力系统调频技术研究的回顾与展望[J].电网技术,2018,42(6):1793-1803.Zhang Xu,Chen Yunlong,Yue Shuai,et al.Retrospect and prospect of research on frequency regulation technology of power system by wind power[J].Power System Technology,2018,42(6):1793-1803(in Chinese).
- [12]Josephine R L,Suja S.Estimating PMSG wind turbines by inertia and droop control schemes with intelligent fuzzy controller in Indian development[J].Journal of Electrical Engineering and Technology,2014,9(4):1196-1201.
- [13]Lee H,Kim J,Hur D,et al.Inertial control of a DFIG-based wind power plant using the maximum rate of change of frequency and the frequency deviation[J].Journal of Electrical Engineering and Technology,2015,10(2):496-503.
- [14]范冠男,刘吉臻,孟洪民,等.电网限负荷条件下风电场一次调频策略[J].电网技术,2016,40(7):2030-2037.Fan Guannan,Liu Jizhen,Meng Hongmin,et al.Primary frequency control strategy for wind farms under output-restricted condition[J].Power System Technology,2016,40(7):2030-2037(in Chinese).
- [15]Lee J,Muljadi E,S?rensen P,et al.Releasable kinetic energy-based inertial control of a DFIG wind power plant[J].IEEE Transactions on Sustainable Energy,2016,7(1):279-287.
- [16]隗霖捷,王德林,李芸,等.基于可变系数的双馈风电机组与同步发电机协调调频策略[J].电力系统自动化,2017,41(2):94-100.Wei Linjie,Wang Delin,Li Yun,et al.Variable coefficient based coordinated frequency modulation strategy between DFIG-based wind turbine and synchronous generator[J].Automation of Electric Power System,2017,41(2):94-100(in Chinese).
- [17]Hwang M,Muljadi E,Jang G,et al.Disturbance-adaptive short-term frequency support of a DFIG associated with the variable gain based on the RoCoF and rotor speed[J].IEEE Transactions on Power Systems,2017,32(3):1873-1881.
- [18]姚亚鑫,刘锋,刘璋玮,等.面向长期调频的风机非线性下垂控制设计[J].电网技术,2018,42(6):1845-1852.Yao Yaxin,Liu Feng,Liu Zhangwei,et al.Nonlinear droop control of VSWTs for sustained frequency regulation[J].Power System Technology,2018,42(6):1845-1852(in Chinese).
- [19]Yang D J,Kim J,Kang Y C,et al.Temporary frequency support of a DFIG for high wind power penetration[J].IEEE Transactions on Power Systems,2018,33(3):3428-3437.
- [20]Kang M,Muljadi E,Hur K,et al.Stable adaptive inertial control of a doubly-fed induction generator[J].IEEE Transactions on Smart Grid,2016,7(6):2971-2979.
- [21]Kang M,Kim K,Muljadi E,et al.Frequency control support of a doubly-fed induction generator based on the torque limit[J].IEEETransactions on Power Systems,2016,31(6):4575-4583.
- [22]Liu Y,Zhou X Y,Ouyang S.Capacitor voltage synchronizing control based VSG scheme for inertial and primary frequency responses of Type-4 WTGs[J].IET Generation,Transmission&Distribution,2018,12(14):3461-3469.
- [23]Lyu X,Zhao J,Jia Y W,et al.Coordinated control strategies of PMSG-based wind turbine for smoothing power fluctuations[J].IEEETransactions on Power Systems,2019,34(1):391-401.
- [24]Muller S,Deicke M,De Doncker R W.Doubly fed induction generator systems for wind turbines[J].IEEE Industry Applications Magazine,2002,8(3):26-33.
- [25]Ajjarapu V,Mc Calley J D,Rover D,et al.Novel sensorless generator control and grid fault ride-through strategies for variable-speed wind turbines and implementation on a new real-time simulation platform[D].Ames,IA,USA:Iowa State University,2010.
- [26]Ye R J,Li H,Chen Z,et al.Comparison of transient behaviors of wind turbines with DFIG considering the shaft flexible models[C]//2008International Conference on Electrical Machines and Systems,Wuhan,2008:2585-2590.
- [27]Byerly R T.Dynamic models for steam and hydro turbines in power system studies[J].IEEE Transactions on Power Apparatus and Systems,1973,PAS-92(6):1904-1915.