基于角频率偏差补偿的VSG有功控制A VSG Active Power Control Based on Angular Frequency Deviation Compensation
陈宇杰;王淳;王青;刘宽;伍惠铖;
摘要(Abstract):
传统的虚拟同步发电机(virtual synchronous generator,VSG)有功控制调节虚拟惯量和虚拟阻尼无法实现系统各动态性能指标的一致性改善,为此提出基于角频率偏差补偿的VSG有功控制。该控制策略是在原输出有功功率上叠加角频率的偏差补偿,加快VSG跟踪有功功率指令的速度,减小动态过程中有功功率的不平衡差额。通过调节角频率偏差补偿系数,在不改变原VSG有功控制稳态性能的同时,对系统动态性能的改善具有一致性,能同时满足有功和角频率最大超调量减小,系统响应时间和调整时间缩短的VSG控制器设计要求。最后通过Matlab/Simulink仿真算例验证了所提控制策略的有效性和优越性。
关键词(KeyWords): 虚拟同步发电机;有功控制;虚拟惯量;虚拟阻尼;角频率偏差补偿;动态性能
基金项目(Foundation): 国家自然科学基金资助项目(51467012)~~
作者(Author): 陈宇杰;王淳;王青;刘宽;伍惠铖;
Email:
DOI: 10.13335/j.1000-3673.pst.2018.1247
参考文献(References):
- [1]吕志鹏,吴鸣,黄红,等.一种具有网络自适应能力的分布式电源改进下垂控制策略[J].电网技术,2018,42(9):2948-2957.LüZhipeng,Wu Ming,Huang Hong,et al.An improved droop control with network self-adaptability for distributed generation[J].Power System Technology,2018,42(9):2948-2957(in Chinese).
- [2]Jakhar S,Soni M S,Gakkhar N.Historical and recent development of concentrating photovoltaic cooling technologies[J].Renewable and Sustainable Energy Reviews,2016,6(60):60-74.
- [3]邵尤国,赵洁,方俊钧,等.基于负荷分类增长的分布式风电源与电容器联合动态规划[J].电网技术,2019,43(1):316-323.Shao Youguo,Zhao Jie,Fang Junjun,et al.Integrated dynamic planning of distributed wind generation and capacitor based on load classification growth[J].Power System Technology,2019,43(1):316-323(in Chinese).
- [4]张世翔,吕帅康.面向园区微电网的综合能源系统评价方法[J].电网技术,2018,42(8):2431-2438.Zhang Shixiang,LüShuaikang.Evaluation method of park-level integrated energy system for microgrid[J].Power System Technology,2018,42(8):2431-2438(in Chinese).
- [5]Lasseter R H.Microgrids[C]//IEEE Power Engineering Society Winter Meeting.New York:IEEE,2002:305-308.
- [6]刘澧庆,吴宁,张焕亨,等.微电网经济型二次频率和电压控制的多目标优化模型及仿真验证[J].电网技术,2019,43(2):521-529.Liu Liqing,Wu Ning,Zhang Huanheng,et al.Multi-objective optimization model and its simulation verification for economical secondary frequency and voltage controls of microgrids[J].Power System Technology,2019,43(2):521-529(in Chinese).
- [7]舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-9.Shu Yinbiao,Zhang Zhigang,Guo Jianbo,et al.Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE,2017,37(1):1-9(in Chinese).
- [8]方番,李媛.储能型准Z源逆变器的积分滑模电流控制策略[J].电网技术,2018,42(9):2967-2975.Fang Fan,Li Yuan.Integrated sliding-mode current control strategy for energy-stored quasi-Z-source inverter[J].Proceedings of the CSEE,2018,42(9):2967-2975(in Chinese).
- [9]Aktarujjaman M,Haque M E,Negnevitsky M.Control stabilisation of multiple distributed generation[C]//Power Engineering Conference.Perth,Australia:IEEE,2007:1-5.
- [10]程冲,杨欢,曾正,等.虚拟同步发电机的转子惯量自适应控制方法[J].电力系统自动化,2015,39(10):82-89.Cheng Chong,Yang Huan,Zeng Zheng,et al.Rotor inertia adaptive control method of VSG[J].Automation of Electric Power Systems,2015,39(10):82-89(in Chinese).
- [11]李东东,朱钱唯,程云志,等.基于自适应惯量阻尼综合控制算法的虚拟同步发电机控制策略[J].电力自动化设备,2017,37(11):72-77.Li Dongdong,Zhu Qianwei,Cheng Yunzhi,et al.Control strategy of virtual synchronous generator based on self-adaptive rotor inertia and damping combination control algorithm[J].Electric Power Automation Equipment,2017,37(11):72-77(in Chinese).
- [12]Alipoor J,Miura Y,Ise T.Power system stabilization using virtual synchronous generator with alternating moment of inertia[J].IEEEJournal of Emerging and Selected Topics in Power Electronics,2015,3(2):451-458.
- [13]Torres L M A,Lopes L A C,Morán T L A,et al.Self-tuning virtual synchronous machine:a control strategy for energy storage systems to support dynamic frequency control[J].IEEE Transactions on Energy Conversion,2014,29(4):833-840.
- [14]徐海珍,张兴,刘芳,等.基于超前滞后环节虚拟惯性的VSG控制策略[J].中国电机工程学报,2017,37(7):1918-1926.Xu Haizhen,Zhang Xing,Liu Fang,et al.Virtual synchronous generator control strategy based on lead-lag link virtual inertia[J].Proceedings of the CSEE,2017,37(7):1918-1926(in Chinese).
- [15]黄林彬,辛焕海,黄伟,等.含虚拟惯量的电力系统频率响应特性定量分析方法[J].电力系统自动化,2018,42(8):31-38.Huang Linbin,Xin Huanhai,Huang Wei,et al.Quantified analysis method of frequency response characteristics for power systems with virtual inertia[J].Automation of Electric Power Systems,2018,42(8):31-38(in Chinese).
- [16]Qing C Z,Nguyen P L,Zhenyu M,et al.Self-synchronized synchronverters:inverters without a dedicated synchronization unit[J].IEEE Transactions on Power Electronics,2014,29(2):617-630.
- [17]吴恒,阮新波,杨东升,等.虚拟同步发电机功率环的建模与参数设计[J].中国电机工程学报,2015,35(24):6508-6518.Wu Heng,Ruan Xinbo,Yang Dongsheng,et al.Modeling of the power loop and parameter design of virtual synchronous generators[J].Proceedings of the CSEE,2015,35(24):6508-6518(in Chinese).
- [18]Beck H P,Hesse R.Virtual synchronous machine[C]//Proceedings of the 9th International Conference on Electrical Power Quality and Utilisation.Barcelona:IEEE,2007:1-6.
- [19]丁明,杨向真,苏建徽.基于虚拟同步发电机思想的微电网逆变电源控制策略[J].电力系统自动化,2009,33(8):89-93.Ding Ming,Yang Xiangzhen,Su Jianhui.Control strategies of inverters based on virtual synchronous generator in a microgrid[J].Automation of Electric Power Systems,2009,33(8):89-93(in Chinese).
- [20]杜威,姜齐荣,陈蛟瑞.微电网电源的虚拟惯性频率控制策略[J].电力系统自动化,2011,35(23):26-31,36.Du Wei,Jiang Qirong,Chen Jiaorui.Frequency control strategy of distributed generations based on virtual inertia in a microgrid[J].Automation of Electric Power Systems,2011,35(23):26-31,36(in Chinese).
- [21]何仰赞,温增根.电力系统分析[M].3版.武汉:华中科技出版社,2002.