基于模糊神经网络的电能表误差超差风险预测模型Electrical Power Meter Error Overproof Calculation Model Based on Fuzzy Neural Network
金阳忻;
摘要(Abstract):
随着智能电能表分拣业务的开展,为实现分拣后重复利用电能表的误差超差风险预测,将分拣中测得的智能电能表误差数据和其它相关参数分类后作为征兆,设计了一种适用于电能表误差超差风险预测的改进模糊神经网络模型。先利用BP-RBF混合神经网络得到未来第n年误差的预测值,在此基础上通过模糊推理方法得到未来第n年电能表误差超差的风险。最后利用浙江分拣试点工作的部分结果作为训练和预测数据进行了风险预测模型的验证,经验证其有效性符合预期。
关键词(KeyWords): 智能电能表;误差超差风险预测;模糊神经网络;BP-RBF混合神经网络
基金项目(Foundation): 国家自然科学基金资助项目(51611130197)~~
作者(Author): 金阳忻;
Email:
DOI: 10.13335/j.1000-3673.pst.2019.0081
参考文献(References):
- [1]JJG596-2012.电子式交流电能表[S].北京:国家质量检验检疫总局,2012.
- [2]QGDW11776-2017.拆回电能表分拣装置技术规范[S].北京:国家电网有限公司,2017.
- [3]沈华,徐莹.电子式三相电网电能表计量误差预测仿真[J].计算机仿真,2017,34(10):101-104.Shen Hua,Xu Ying.State simulation and analysis of electronic three phase electric energy meter[J].Computer Simulation,2017,34(10):101-104(in Chinese).
- [4]王学伟,陈景霞,朱孟.智能电能表的全系统模型及其动态误差分析[J].中国电机工程学报,2018,38(21):6214-6222.Wang Xuewei,Chen Jingxia,Zhu Meng.Whole-system model of smart electricity meter and analysis of dynamic errors[J].Proceedings of the CSEE,2018,38(21):6214-6222(in Chinese).
- [5]袁金灿,马进,王思彤,等.智能电能表可靠性预计技术[J].电力自动化设备,2013,33(7):161-166.Yuan Jincan,Ma Jin,Wang Sitong,et al.Tolerance design based on branch-and-bound method for metering circuit of electrical energy meter[J].Electric Power Automation Equipment,2013,33(7):161-166(in Chinese).
- [6]陈立宏.抗剪强度概率特性的相关与非相关回归统计法[J].岩土工程学报,2013,35(8):1397-1402.Chen Lihong.Correlated and uncorrelated linear regression statistical methods for probabilistic characteristics of shear strength[J].Chinese Journal of Geotechnical Engineering,2013,35(8):1397-1402(in Chinese).
- [7]田冬梅,蒋仲安,姚建,等.基于正交试验与回归统计方法的露天矿运输扬尘影响因素分析[J].北京科技大学学报,2009,31(8):957-963.Tian Dongmei,Jiang Zhongan,Yao Jian,et al.Influencing factors analysis of dust mass concentration by transportation in open-pit mines based on orthogonal experiment and multiple regression statistics[J].Chinese Journal of Engineering,2009,31(8):957-963(in Chinese).
- [8]王文祥,安维峥.基于模糊聚类分析的燃气轮机振动故障诊断研究[J].燃气轮机技术,2013,26(3):44-47.Wang Wenxiang,An Weizheng.Engine vibration fault diagnosis research based on fuzzy clustering method of gas turbine[J].Gas Turbine Technology,2013,26(3):44-47(in Chinese).
- [9]成敬周,张举,陈琛,等.基于高频暂态分量进行相关分析及模糊推理的选相新方法[J].电力系统自动化,2018,42(14):48-53.Cheng Jingzhou,Zhang Ju,Chen Chen,et al.Novel technique for fault phase selection based on correlation analysis and fuzzy set using the transient signals in EHV power system[J].Automation of Electric Power Systems,2018,42(14):48-53(in Chinese).
- [10]李国勇.智能预测控制及其MTALAB实现[M].北京:电子工业出版社,2010:2-65.
- [11]过江,张碧肖.基于PCA与BP神经网络的充填管道失效风险评估[J].黄金科学技术,2015,23(5):66-71.Guo Jiang,Zhang Bixiao.Invalidation risk evaluation of backfill pipe based on PCA and BP neural network[J].Gold Science and Technology,2015,23(5):66-71(in Chinese).
- [12]姜绍飞,张帅.基于概率神经网络分类器的数据融合损伤检测方法[J].计算力学学报,2008(5):700-705.Jiang Shaofei,Zhang Shuai.Data-fusion damage detection approach based on probabilistic neural network classifier[J].Chinese Journal of Computational Mechanics,2008(5):700-705(in Chinese).
- [13]刘明堂,张成才,田壮壮,等.基于RBF神经网络的黄河含沙量测量数据融合研究[J].水利水电技术,2015,46(1):126-130.Liu Mingtang,Zhang Chengcai,Tian Zhuangzhuang,et al.RBFneural networks based-study on data fusion for measurement of sediment concentration of Yellow River[J].Water Resources and Hydropower Engineering,2015,46(1):126-130(in Chinese).
- [14]李江.神经-模糊预测控制算法及应用[J].浙江大学学报:工学版,2002,36(2):11-14.Li Jiang.Neural-fuzzy predictive control algorithm and its application[J].Journal of Zhejiang University:Engineering Science,2002,36(2):11-14(in Chinese).
- [15]荣健,乔文钊.基于模糊神经系统的多传感器数据融合算法[J].电子科技大学学报,2010,39(3):376-378,424.Rong Jian,Qiao Wenzhao.Neural-fuzzy-based multisensor data fusion architecture[J].Journal of University of Electronic Science and Technology of China,2010,39(3):376-378,424(in Chinese).
- [16]李求洋,李新,王淑娟.基于分支定界法的电能表计量电路容差设计方法[J].电力自动化设备,2016,36(5):102-107.Li Qiuyang,Li Xin,Wang Shujuan.Tolerance design based on branch-and-bound method for metering circuit of electrical energy meter[J].Electric Power Automation Equipment,2016,36(5):102-107(in Chinese).
- [17]李奎,李晓倍,郑淑梅,等.基于BP神经网络的交流接触器剩余电寿命预测[J].电工技术学报,2017,32(15):120-127.Li Kui,Li Xiaobei,Zheng Shumei,et al.Residual electrical life prediction for AC contactor based on BP neural network[J].Transactions of China Electrotechnical Society,2017,32(15):120-127(in Chinese).
- [18]Sch?lkopf B,Platt J,Hofmann T.Greedy layer-wise training of deep networks[J].Advances in Neural Information Processing Systems,2007,19(1):153-160.
- [19]Liu T F,Zhang N L,Chen P,et al.Greedy learning of latent tree models for multidimensional clustering[J].Machine Learning,2015,98(1-2):301-330.
- [20]Foresee F D,Hagan M T.Gauss-Newton approximation to Bayesian learning[C]//International Conference on Neural Networks.1997:1930-1935.
- [21]Müller P,Insua D R.Issues in Bayesian analysis of neural network models[J].Neural Computation,2006,10(3):749-770.
- [22]Perera N,Rajapakse A D.Recognition of fault transients using a probabilistic neural-network classifier[J].IEEE Transactions on Power Delivery,2010,26(1):410-419.
- [23]肖勇,罗睿希,赵伟,等.基于IEC 61850的数字化电能表用快速准同步谐波测量算法[J].电网技术,2018,42(2):621-627.Xiao Yong,Luo Ruixi,Zhao Wei,et al.Fast quasi-synchronous harmonic algorithm for IEC61850 based digital energy metering devices[J].Power System Technology,2018,42(2):621-627(in Chinese).
- [24]王鹏,林佳颖,郭屾,等.配用电数据分析及应用[J].电网技术,2017,41(10):3333-3340.Wang Peng,Lin Jiaying,Guo Shan,et al.Distribution system data analytics and applications[J].Power System Technology,2017,41(10):3333-3340(in Chinese).
- [25]徐莘,解绍锋.负序条件下基于正序有功功率的电能计量方案[J].电网技术,2018,42(5):1613-1619.Xu Shen,Xie Shaofeng.An electricity metering scheme based on positive-sequence active power in negative sequence condition[J].Power System Technology,2018,42(5):1613-1619(in Chinese).
- [26]邓长虹,张思捷,杨威,等.基于智能模糊决策的光储系统实时调度技术[J].电网技术,2018,42(10):3227-3233.Deng Changhong,Zhang Sijie,Yang Wei,et al.Real-time scheduling technology of photovoltaic-battery generation system based on intelligent fuzzy logic control[J].Power System Technology,2018,42(10):3227-3233(in Chinese).