基于改进强跟踪无迹卡尔曼滤波的电力系统同步相量估计方法Synchronous Phasor Estimation Method for Power System Based on Modified Strong Tracking Unscented Kalman Filter
牛胜锁;王康乐;梁志瑞;
摘要(Abstract):
快速准确地获得电力信号的频率、幅值和相角,对于同步相量测量技术在配电网中的推广应用具有重要意义。配电网信号具有高噪声、强瞬变等特点,应用目前的算法在实时跟踪瞬变信号方面,其性能不太理想。针对强瞬变环境下的信号参数估计问题展开分析,提出一种改进的强跟踪无迹卡尔曼滤波(modified strong tracking unscented Kalman filter,MSTUKF)算法。首先分析了强跟踪滤波算法(strong tracking filter,STF)的基本原理,然后基于无损变换理论,对STF算法进行等价推导。在此基础上,针对状态方程为线性,量测方程为非线性的情况,提出一种在频率、幅值和相角突变时的快速跟踪算法。在sigma点集中引入渐消因子,使得算法仅需进行一次无损变换,简化了计算。同时将渐消因子引入输出协方差矩阵,改善算法在系统参数突变时的稳定性。仿真结果表明,所提同步相量测量算法能快速地对频率、幅值和相角进行跟踪,并且收敛性好、测量精度高。
关键词(KeyWords): 相量估计;强瞬变;STF滤波算法;无损变换;渐消因子
基金项目(Foundation): 国家重点研发计划项目(2017YFB0902901)~~
作者(Author): 牛胜锁;王康乐;梁志瑞;
Email:
DOI: 10.13335/j.1000-3673.pst.2018.2814
参考文献(References):
- [1]Mu?oz J P,Maga?a M E,Cotilla-Sanchez E.Adaptive master-slave unscented Kalman filter for grid voltage frequency estimation[J].IETSignal Processing,2018,12(4):496-505.
- [2]王科,陈丽华,麦瑞坤,等.基于扩展卡尔曼滤波频率跟踪的DFT同步相量测量算法[J].电网技术,2014,38(9):2519-2524.Wang Ke,Chen Lihua,Mai Ruikun,et al.An improved discrete Fourier transformation based synchronous phasor measurement algorithm using frequency tracking founded on extended Kalman filter[J].Power System Technology,2014,38(9):2519-2524(in Chinese).
- [3]Nayak P,Sahu B N.A robust extended Kalman filter for the estimation of time varying power system harmonics noise[C]//2015IEEE Power,Communication and Information Technology Conference(PCITC).Bhubaneswar,2015:635-640.
- [4]Cherif M L,Leclère J,Landry R J.Loosely coupled GPS/INSintegration with snap to road for low-cost land vehicle navigation:EKF-STR for low-cost applications[C]//2018 IEEE/ION Position,Location and Navigation Symposium(PLANS).Monterey,CA,2018:275-282.
- [5]Wu P,Shi Z,Yan P.Improved EKF-SLAM algorithm of unmanned helicopter autonomous landing on ship[C]//2018 37th Chinese Control Conference(CCC).Wuhan,2018:5287-5292.
- [6]Kung Y,Risfendra.ModelSim/Simulink co-simulation of a sensorless control for PMSM drives based on I-F startup and EKF[C]//2016International Conference on Applied System Innovation(ICASI).Okinawa,2016:1-4.
- [7]Walambe R A,Apte A A,Joshi V A.Disturbance observer based sensor-less vector control drive for PMSM using EKF[C]//2016 IEEESymposium on Sensorless Control for Electrical Drives(SLED).Nadi,2016:1-5.
- [8]Hong J,Rui L,Yingjing S,et al.A series-wound EKF algorithm for attitude estimation[C]//2017 29th Chinese Control and Decision Conference(CCDC),Chongqing,2017:3847-3852.
- [9]Wang C,Liu Y,Song J.A hardware-in-the-loop simulation for LOSrate estimation of strap down seeker based on EKF[C]//2016 14th International Conference on Control,Automation,Robotics and Vision(ICARCV).Phuket,2016:1-5.
- [10]李依泽,陆超,王印峰,等.基于Kalman滤波与神经网络的高精度同步时钟算法[J].电网技术,2019,43(3):777-783.Li Yize,Lu Chao,Wang Yinfeng,et al.A high accuracy synchronous clock algorithm based on Kalman filter and neural network[J].Power System Technology,2019,43(3):777-783(in Chinese).
- [11]Nguyen T T,Li X J.A fast and accurate method for estimating power systems phasors using DFT with interpolation[C]//2006 IEEE Power Engineering Society General Meeting.Montreal,Que,2006:8.
- [12]Nguyen T T,Li X J.A fast and accurate method for estimating power systems phasors using DFT with interpolation[C]//IEEE Power Engineering Society General Meeting.Canada:IEEE,2006:1-8.
- [13]Sidhu T S,Zhang Xudong,Balamourougan V.A new half-cycle phasor estimation algorithm[J].IEEE Transactions on Power Delivery,2005,20(2):1299-1305.
- [14]Wang Maohai,Sun Yuanzhang.A practical method to improve phasor and power measurement accuracy of DFT algorithm[J].IEEETransactions on Power Delivery,2006,21(3):1054-1062.
- [15]周东华,席裕庚,张钟俊.非线性系统带次优渐消因子的扩展卡尔曼滤波[J].控制与决策,1990,5(5):1-6.Zhou Donghua,Xi Yugeng,Zhang Zhongjun.Suboptimal fading extended Kalman filter for nonlinear systems[J].Control and Decision,1990,5(5):1-6(in Chinese).
- [16]马帅,赵仁德,吴晓波.基于强跟踪滤波器的单相电压基波相位实时提取[J].中国电机工程学报,2012,32(28):83-89,15.Ma Shuai,Zhao Rende,Wu Xiaobo.Strong tracking filter based fundamental phase real-time extraction for single-phase voltage[J].Proceedings of the CSEE,2012,32(28):83-89,15(in Chinese).
- [17]王小旭,赵琳,夏全喜,等.基于Unscented变换的强跟踪滤波器[J].控制与决策,2010,25(7):1063-1068.Wang Xiaoxu,Zhao Lin,Xia Quanxi,et al.Strong tracking filter based on unscented transformation[J].Control and Decision,2010,25(7):1063-1068(in Chinese).
- [18]Mu?oz J P,Maga?a M E,Cotilla-Sanchez E.Adaptive master-slave unscented Kalman filter for grid voltage frequency estimation[J].IETSignal Processing,2018,12(4):496-505.
- [19]Julier S,Uhlmann J,Durrant-Whyte H F.A new method for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
- [20]Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for filtering nonlinear systems[C]//Proceedings of 1995 American Control Conference-ACC'95,Seattle.WA,USA,1995:1628-1632.
- [21]Narasimhappa M,Sabat S L,Nayak J.Adaptive sampling strong tracking scaled unscented Kalman filter for denoising the fibre optic gyroscope drift signal[J].IET Science,Measurement&Technology,2015,9(3):241-249.