求解含储能装置的微电网动态最优潮流的对偶半定规划方法Dual Semi-Definite Programming Method for Dynamic Optimal Power Flow With Energy Storage Device
郑佳滨;刘明波;谢敏;
摘要(Abstract):
电网动态最优潮流是一个全天24个时间断面耦合的最优潮流问题,需要考虑常规机组爬坡率约束和分布式储能装置能量约束。具有二阶收敛特性的内点法可以对其进行快速求解,但无法保证解的全局最优性。采用对偶半定规划法求解该问题,对孤岛运行的微电网动态最优潮流原始模型及向对偶半定规划模型的转换做了详细的介绍,并给出了严格的全局最优性判据。同时将储能装置的强非线性模型等价地变换成线性模型,并给出了相应的证明。某实际微电网和IEEE 30节点系统的测试结果表明,对偶半定规划法可高效求解动态最优潮流问题,其解可保证全局最优性。
关键词(KeyWords): 微电网;动态最优潮流;储能装置;对偶半定规划法;全局最优解
基金项目(Foundation): 国家重点基础研究发展计划(973计划)(2013CB228205)~~
作者(Author): 郑佳滨;刘明波;谢敏;
Email:
DOI: 10.13335/j.1000-3673.pst.2017.0502
参考文献(References):
- [1]Xie K,Song Y H.Dynamic optimal power flow by interior point methods[J].IEE Proceedings-Generation,Transmission and Distribution,2001,148(1):76-84.
- [2]Gill S,Kockar I,Ault G W.Dynamic optimal power flow for active distribution networks[J].IEEE Transactions on Power Systems,2014,29(1):121-131.
- [3]Dall’Anese E,Zhu H,Giannakis G B.Distributed optimal power flow for smart microgrids[J].IEEE Transactions on Smart Grid,2014,4(3):1464-1475.
- [4]Thiébaux S.Dynamic optimal power flow in microgrids using the alternating direction method of multipliers[J].Mathematics,2014,10(29):1-8.
- [5]Sortomme E,El-Sharkawi M A.Optimal power flow for a system of microgrids with controllable loads and battery storage[J].Power Systems Conference and Exposition,2009,107(1):1-5.
- [6]李滨,梁水莹,祝靖,等.含非粮生物质发电的微网动态经济调度[J].电力系统自动化,2016,40(11):39-46.Li Bin,Liang Shuiyin,Zhu Jing,et al.Dynamic economic dispatch modelling of microgrid with non-food biomass power generation[J].Automation of Electric Power Systems,2016,40(11):39-46(in Chinese).
- [7]吴红斌,侯小凡,赵波,等.计及可入网电动汽车的微网系统经济调度[J].电力系统自动化,2014,38(9):77-84.Wu Hongbin,Hou Xiaofan,Zhao Bo,et al.Economic dispatch of microgrid considering plug-in electric vehicle[J].Automation of Electric Power Systems,2014,38(9):77-84(in Chinese).
- [8]Gill S,Kockar I,Ault G W.Dynamic optimal power flow for active distribution networks[J].IEEE Transactions on Power Systems,2014,29(1):121-131.
- [9]Duan C,Jiang L,Fang W,et al.Multi-period opf with energy storages and renewable sources:a parallel moment approach[C]//IEEE Power and Energy Society General Meeting.IEEE,2016:1-5.
- [10]Morstyn T,Hredzak B,Agelidis V.Network topology independent multi-agent dynamic optimal power flow for microgrids with distributed energy storage systems[J].IEEE Transactions on Smart Grid,2016(99):1-11.
- [11]高戈,胡泽春.含规模化储能系统的最优潮流模型与求解方法[J].电力系统保护与控制,2014,42(21):9-16.Gao Ge,Hu Zechun.Formulation and solution method of optimal power flow with large-scale energy storage[J].Power System Protection and Control,2014,42(21):9-16(in Chinese).
- [12]刘方,颜伟,徐国禹.动态最优潮流的预测/校正解耦内点法[J].电力系统自动化,2007,31(14):38-42.Liu Fang,Yan Wei,Xu Guoyu.Dynamic optimal power flow with decomposed predictor corrector interior point method[J].Automation of Electric Power Systems,2007,31(14):38-42(in Chinese).
- [13]覃智君,阳育德,吴杰康.矢量化动态最优潮流计算的步长控制内点法实现[J].中国电机工程学报,2009,29(7):52-58.Qin Zhijun,Yang Yude,Wu Jiekang.Step-controlled primal-dual interior point method implementation for vectorial dynamic optimal power flow calculation[J].Proceedings of the CSEE,2009,29(7):52-58(in Chinese).
- [14]修乃华,罗自炎.半定规划[M].北京:北京交通大学出版社,2014:21-33.
- [15]Bai X Q,Wei H,Fujisawa K,et al.Semidefinite programming for optimal power flow problems[J].International Journal of Electrical Power and Energy Systems,2008,30(6-7):383-392.
- [16]白晓清,韦化,Fujisawa K,等.求解最优潮流问题的内点半定规划法[J].中国电机工程学报,2008,28(19):56-64.Bai Xiaoqing,Wei Hua,Fujisawa K,et al.Solution of optimal power flow problems by semi-definite programming[J].Proceedings of the CSEE,2008,28(19):56-64(in Chinese).
- [17]Sojoudi S,Lavaei J.Physics of power networks makes hard optimization problems easy to solve[C]//Proceedings of IEEE PES General Meeting.San Diego,USA:IEEE,2012:1-8.
- [18]Bukhsh W,Grothey A,Mc Kinnon K,et al.Local solutions of the optimal power flow problem[J].IEEE Transactions on Power Systems,2013,28(4):4780-4788.
- [19]Low S H.Convex relaxation of optimal power flow-part I:formulations and equivalence[J].IEEE Transactions on Control of Network Systems,2014,1(1):15-27.
- [20]Low S H.Convex relaxation of optimal power flow-part II:exactness[J].IEEE Transactions on Control of Network Systems,2014,1(2):177-189.
- [21]Lavaei J,Low S H.Zero duality gap in optimal power flow problem[J].IEEE Transactions on Power Systems,2012,27(1):92-107.
- [22]何天雨,卫志农,孙国强,等.基于改进内点半定规划算法的拟直流最优潮流[J].电网技术,2015,39(9):2553-2558.He Tianyu,Wei Zhinong,Sun Guoqiang,et al.Quasi direct current optimal power flow based on modified semi-definite programming algorithm[J].Power System Technology,2015,39(9):2553-2558(in Chinese).
- [23]吴玮坪,胡泽春,宋永华,等.结合半正定规划和非线性规划模型的OPF混合优化算法研究[J].中国电机工程学报,2016,36(14):3829-3836.Wu Weiping,Hu Zechun,Song Yonghua,et al.Hybrid optimization of optimal power flow by combining the semidefinite programming and nonlinear programming[J].Proceedings of the CSEE,2016,36(14):3829-3836(in Chinese).
- [24]Madani R,Sojoudi S,Lavaei J.Convex relaxation for optimal power flow problem:mesh networks[J].IEEE Transactions on Power Systems,2015,30(1):1375-1382.