基于负荷点相似的地区短期负荷预测新方法A New Method to Forecast Regional Short-Term Load Based on Similar Load Point
罗军;何光宇;张思远;万源;李小锐;
摘要(Abstract):
提出了一种基于相似点的地区短期负荷预测新方法并形成了基于该算法的专家支持系统,该系统可定量地考虑气象信息、小水电、工作日类型等负荷相关因素。采用该系统对某基荷较小的地区电网进行负荷预测,结果说明了本文算法的正确性和有效性。基于本文算法而编制的软件系统即将投入实际应用。
关键词(KeyWords): 短期负荷预测;数据挖掘;决策树;遗传算法
基金项目(Foundation):
作者(Author): 罗军;何光宇;张思远;万源;李小锐;
Email:
DOI:
参考文献(References):
- [1]康重庆,程旭,夏清,等.一种规范化的处理相关因素的短期负荷预测新策略[J].电力系统自动化,1999,23(18):32-35.Kang Chongqing,Cheng Xu,Xia Qing,et al.A new unified approach to short-term load forecasting considering correlated factors[J].Automation of Electric Power Systems,1999,23(18):32-35(in Chinese).
- [2]莫维仁,张伯明,孙宏斌,等.短期负荷预测中选择相似日的探讨[J].清华大学学报(自然科学版),2004,1:29-36.Mo Weiren,Zhang Boming,Sun Hongbin,et al.Method to select similar days for short-term load forecasting[J].Journal of Tsinghua University(Science and Technology).2004,1:29-36(in Chinese).
- [3]Almuallim H.Efficient algorithm for optimal pruning of decision trees[J].Artificial Intelligence,1996,83(2):347-362.
- [4]刘小华,刘沛,张步涵,等.逐级均值聚类算法的RBFN模型在负荷预测中的应用[J].中国电机工程学报,2004,24(2):17-21.Liu Xiaohua,Liu Pei,Zhang Buhan,et al.Application of RBFN model for load forecasting based on ranking means clustering[J].Proceedings of the CSEE,2004,24(2):17-21(in Chinese).
- [5]韩慧,毛锋,王文渊.数据挖掘中决策树算法的最新进展[J].计算机应用研究,2004,21(12):5-8.Han Hui,Mao Feng,Wang Wenyuan.Review of recent development in decision tree algorithm in data mining[J].Application Research of Computers,2004,21(12):5-8(in Chinese).
- [6]赵登福,庞文晨,张讲社,等.基于贝叶斯理论和在线学习支持向量机的短期负荷预测[J].中国电机工程学报,2005,25(13):8-13.Zhao Dengfu,Pang Wenchen,Zhang Jiangshe,et al.Based on Bayesian theory and online learning SVM for short term load forecasting[J].Proceedings of the CSEE,2005,25(13):8-13(in Chinese).
- [7]Breiman L,Friend J H,Olshen R A.Classification and regression trees[M].California:Belmont Wadsworth Inc,1984.
- [8]Quinlan J RI.nduction of decision trees[J].Machine Learning,1986,81-106.
- [9]冯丽,邱家驹.基于模糊多目标遗传优化算法的节假日电力负荷预测[J].中国电机工程学报,2005,25(10):29-34.Feng Li,Qiu Jiaju.Short-term load forecasting for anomalous days based on fuzzy multi-objective genetic optimization algorithm[J].Proceedings of the CSEE,2005,25(10):29-34(in Chinese).
- [10]Nakashima T,Nakai G,Ishibuchi H.A fuzzy rule-based system for ensembling classification systems[C].Proceedings of IEEE International Conference on Fuzzy Systems,Honolulu,2002.
- [11]Fonseca C M,Fleming P J.Genetic algorithm for multiobjective:formulation,discussion and generalization[C].Proceedings of the 5th International Conference on Genetic Algorithms,San Mateo,California,1993.
- [12]石立宝,徐国禹.一种求解电网多目标模糊优化运行的自适应进化规划算法[J].中国电机工程学报,2001,21(3):31-36.Shi Libao,Xu Guoyu.A self-adaptive evolutionary programming algorithm of multi-objective fuzzy optimal operation[J].Proceedings of the CSEE,2001,21(3):31-36(in Chinese).
- [13]邰能灵,侯志俭.小波模糊神经网络在电力系统短期负荷预测中的应用[J].中国电机工程学报,2004,24(1):24-29.Tai Nengling,Hou Zhijian.New short-term load forecasting principle with the wavelet transform fuzzy neural network for the power systems[J].Proceedings of the CSEE,2004,24(1):24-29(in Chinese).
- [14]莫维仁,张伯明,孙宏斌,等.扩展短期负荷预测的原理和方法[J].中国电机工程学报,2003,23(3):1-4.Mo Weiren,Zhang Boming,Sun Hongbin,et al.Extended short-term load forecasting principle and method[J].Proceedings of the CSEE,2003,23(3):1-4(in Chinese).
- [15]陈耀武,汪乐宇,龙洪玉.基于组合式神经网络的短期电力负荷预测模型[J].中国电机工程学报,2001,21(4):79-82.21(4):79-82(in Chinese).Chen Yaowu,Wang Leyu,Long Hongyu.Short-term load forecasting with modular neural net works[J].Proceedings of the CSEE,2001,
- [16]张智晟,孙雅明,王兆峰,等.优化相空间近邻点与递归神经网络融合的短期负荷预测[J].中国电机工程学报,2003,23(8):44-49.Zhang Zhisheng,Sun Yaming,Wang Zhaofeng,et al.A new STLF approach based on the fusion optimal neighbor points in phase space and the recursive neural network[J].Proceedings of the CSEE,2003,23(8):44-49(in Chinese).
- [17]罗滇生,姚建刚,何洪英,等.基于自适应滚动优化的电力负荷多模型组合预测系统的研究与开发[J].中国电机工程学报,2003,23(5):58-61.Luo Diansheng,Yao Jiangang,He Hongying,et al.Research and development of multi-model combining load forecasting system based on self-adaptive rolling optimization[J].Proceedings of the CSEE,2003,23(5):58-61(in Chinese).
- [18]Prodromidis A L.Cost complexity pruning of meta-classifiers[C].Proceedings of the National Conference on Artificial Intelligence,Orlando,Florida,1999.